Overview of Modern Symmetric-Key Cipher
Cryptanalysis Techniques

Author: Sylvain Martinez
Version: 1.1

New versions of this document are based on the version | submitted as part of the
requirements for the award of my MSc in Information Security at Royal Holloway,
University of London.

CHANGES HISTORY

Version Date Changes

1.1 2010/03/22 | Page 53: In the Seeded Ciphertext Shuffled box, sC; and sC; have been replaced
with sC,.; and sC,
Page 64: In the Seeded Ciphertext Shuffled box, sCi and sC; have been replaced
with sC,.; and sC,

1.0 2009/08/28 | This version was submitted as part of the requirements for the award of the MSc
in Information Security at Royal Holloway, University of London.

FOREWORDS

| have been interested in cryptography since 1995, which lead me to create my own
symmetric-key block cipher algorithm for my BSc project in 1998. Although | have
some basic knowledge on how symmetric-key ciphers work, | have never studied the
cryptanalysis side of it. Indeed, it is easier to claim a cryptography algorithm is
secured than to prove it actually isn’t.

| have always looked for and welcomed new challenges; the topic of this thesis was
no exception. Furthermore, because this is an area of personal interest, it has been a
very time demanding project due to my thirst for knowledge and tendency of
wanting to understand the details. As a result | researched a lot of materials and
learnt a lot on a field which at times requires a lot of dedication.

Although an introduction will be provided to the different concepts discussed in this
thesis, previous foundation knowledge of mathematics and cryptography will be
beneficial to fully understand its content.

| would like to thanks the following people who, in some form or another, had an
impact on my work. Thank you to my current employer for sponsoring my MSc at
Royal Holloway; to my supervisor C. Cid for answering all those endless questions
and guiding me along the way; to F. Piper for having re-ignited my flame for
cryptology; to R. Walliker for seeding the idea of an MSc in my mind; to D. Mitchell
who always like to challenge my thoughts even when wrong!; to T. Tippins for once
more providing some valuable feedback; to my work colleagues R. Vekaria and C.
Calhoun for taking the time to look at this thesis; to my line managers for being
flexible on my working schedule; to my parents for always being supportive and
believing in me; to my brother F. for always reminding of what is important; to my
brother T. for helping me with the cipher’s statistics scripts and correcting my
mathematical terminologies.

And finally to my fiancée, for supporting me through the numerous late evenings
spent working on this thesis and for everything!

ABSTRACT

The aim of this thesis is to understand the general concept of cryptanalysis and to
discuss the main modern symmetric-key cryptanalysis techniques.

Linear Cryptanalysis will be described in detail as it is commonly used and provides
the basis for other real and conceptual attacks such as those based on Differential
Cryptanalysis. Though an effort has been made to introduce other modern
cryptanalysis techniques and related progress in research, the detail on techniques
other than Linear Cryptanalysis are beyond the scope of this thesis and can be
researched by following guidance in the referenced material.

To get an appreciation on how those techniques can be used, examples of old
successful and new emerging attacks will be provided for different types of
symmetric-key ciphers. Their real world implications will also be briefly discussed.

To apply what has been learnt while researching this thesis, a cryptanalysis overview
will be conducted on the cipher | have created years ago and entitled BUGS. It will
provide a description if its concept, a normalisation of the algorithm, a list of
relevant attacks and how some of them could be applied to break the cipher.

This thesis consists of eight main chapters and each chapter builds upon the last,
allowing the reader to increase knowledge on the subject.

The first chapter is an introduction to this thesis.

The second chapter defines the cryptography terminology used and an overview of
symmetric-key ciphers.

The third chapter explains the general concept of cryptanalysis by briefly introducing
some foundation techniques.

The fourth chapter introduces modern cryptanalysis techniques and focuses on
linear cryptanalysis

The fifth chapter presents four ciphers cryptanalysis and their real world
implications.

The sixth chapter gives an overview of the BUGS cipher

The seventh chapter gives a high level cryptanalysis of the BUGS cipher and
introduces five potential attacks on that cipher.

The eighth chapter concludes this thesis by summarising what has been discussed,
the future of cryptanalysis and my personal learning through the thesis.

1.
2.

6.

TABLE OF CONTENTS

INtroduction ... ——————————— 6

Cryptography CONCEPLS ... ssssssses 7
2.1 BC=) 0000 0T o PP 7
2.2 TYPES Of CrYPLOZTAPNY oottt ettt st b e ss s s bbb 9
2.3 Symmetric-Key CIphers OVEIVIEW ... enereeneessesesseessessessesssssessessessesssssesssessessesssssses 9

Cryptanalysis CONCEPLS. ... ssssssses 14
31 Cryptanalysis and CryPtOSYSTEIMeereereeseessesserssessessesssesessesssssessesssssssssesssssssssesses 14
3.2 HiStorical CryptanalySiS ... eererseereessessesseessessesssessessessssssessessssssesssssssssessesssssssssesses 14
3.3 Algorithm and implementation attacks ... sessesseens 15
3.4 Known ciphertext attacks ... sssesessessssssssss e sssssssesssssssssesses 16
3.5 KNOWN PlaiNteXt attACKS ..ocveeereereeeeeesresseeeessessesseessessesssessessesssessesssssssssessssssssssssesssssssssesses 16
3.6 Chosen plaintext or ciphertext attacks. ... seseessessesssesseses 17
3.7 Adaptive chosen plaintext or ciphertext attacks.....erenenensesneeseeseeseeseeseeseens 17
3.8 Related KEYS attaCKS ...ooeereeeeresreesseeesressseeessessesseessessssssessesssssssssessessssssessssssssssssssssssssssesses 17

Modern Cryptanalysis Techniques OVerview ... 18
4.1 Statistical and probabilistic attacks ... seeeesees 18
4.2 SHAE ALLACKS ..ot sees s ss e s s s s s ss s 18
4.3 COTTElation ATEACKS .ovvereererreerererrrsesse s sesssssssesssssssssans 19
4.4 Time-Memory Trade-Off...... et s sssssssssssseses 20
4.5 Linear CryptanalySiS ... erersesresssesessessssssessessssssessessessssssesssssssssessesssssssssesssssssssesses 24
4.6 Linear CryptanalysiS VAriants ... eeneenesessesssesessesssssessesssssessessssssessesssssssssesses 32
4.7 Differential Cryptanalysis ... isessse e sssessssssssssssssesssssssssssssssssans 33
4.8 Differential Cryptanalysis Variants.....eeenssesenseesssessessssssessssssssssesssssnns 36
49 Other Cryptanalysis ATtaCKS. ..o ereereereesresseeseessessesssessessessssssessessssssessessssssessesssssssssesses 39

Applied Cryptanalysis to known algorithms.......ccooiinnnnnnsnscsnsnsnsnsnnnns 41
51 9L 0T LT (o) o PP 41
5.2 PaSE ATLACKS couvcvcecerceeeesresre s ss s 41
5.3 EMErging ATLACKS .. sessens s s s sssssss s ssssssesssssssesssssssssans 44

BUGS Cipher...occsnsssassssssssssses 47
6.1 9L 0T LT 0 (o) PP 47
6.2 BUGS CIipher’s CONCEPT .. eereererreeeesressseeessessesssessesssssssssessessssssessssssssssssesssssssssesssssssssesses 47
6.3 G2 Yol 1 T=T 101 U= o 49
6.4 Symmetric-Key encryption funCtioneeeeeersmsessneesssesseesseessssessesssssssnens 50

BUGS Cryptanalysis ... 51
7.1 9L 0T LT 0 (o) o PP 51
7.2 Key Scheduler NormaliSationc.oeneneeneeneesessesseesessesssessessesssesesssssssssessesssssssssesses 52
7.3 Encryption function NormaliSationeeneeeneinseesessseessssssessesssessssssesssesssesans 53
7.4 WX = ol RNT= U=Tot [) o T 54
7.5 Statistical and Probabilistic attack ... 55
7.6 KNOWn PlaiNteXt attACK ..occneceeeereeeeeesrerseeeessessessessessesssessessessssssessessssssesssssssssessesssssssssesss 60
7.7 Chosen plaintext attack with restricted input elements.......ccocerereneernereeseesnens 60
7.8 Unrestricted XOR-Sum Uniqueness Cryptanalysis attack.......comneenrenerssenseenens 61
7.9 Linear Cryptanalysis attackoeeneresseeeesessesssesesssssssssessssssesessessssssessesssssssssesss 63
7.10 FiNAIiNGS SUMIMATY couveureureereesresserseessessessssssessessssssessesssssssssesssssssssesssssssssesssssasssessessessssssessessssssesss 65

£S T 007 s Ud L1) o) o U 66

8.1 What Was aChIeVEd ... seees 66
8.2 Future of CryptanalySis . rreneresseeseessessssseessessesssessessssssssesssssssssessssssssssssesssssssssesss 66
8.3 Personal l@arniNg ... seeseesses e sessssssessessesssssses s sssssssss s sesessssssssssssesses 67
9. APPENDIX A - Thesis SCTiPtscccummmmsmsmsmmmmssssssmssssssssssssssssssssssssssssssses 68
9.1 Frequency ANalySis SCIIPT ... eereereessessssseessessesssessessesssssesssssssssesssssssssessesssssesssesses 68
9.2 Graphical bits representation SCriPt. ... erneesseessessessesssessessesssrssessessessssssesses 71
10. APPENDIX B - BUGS Cryptanalysis Results.........ccocummmnmnmsnsmsnsmsnssssnsnsesens 73
11. APPENDIX C - BUGS Cipher Detailed Diagramsoousesesmsmsmsssssssseens 75
0 0 N (= 7 Yol 4 6 L o 75
11.2 File/Plaintext ENcryption FUNCHION ..o seeses s seesessessesessessessesees 84
12. BiblioBraphy .. 91

1. Introduction

Cryptanalysis is a topic that many people in the security world would have heard of,
but would also not fully understand. It is known by many, because it has been the
underlying of most attacks on data and communication security for centuries. It is
not understood by many, because it is a complex topic which has evolved to require
an increasingly advanced mathematical knowledge. While a large number of
technical papers on cryptanalysis are publicly available, only a few books attempting
to summarize this topic have been written and are either aimed at cryptanalysts or
not detailed enough.

This thesis aims at providing a comprehensive overview of modern symmetric-key
ciphers cryptanalysis techniques and introducing, for the first time, some applied
cryptanalysis attacks on the BUGS cipher.

Cryptanalysis is in essence the counter part of cryptography; the latter having
evidence of its usage dating back thousands of years®, as greatly explained and
summarized in S. Singh’s book [1]. Two different examples from that book can be
used to illustrate the impact of both cryptography and cryptanalysis in history.

S. Singh relates the ill fated story of Mary Queen of Scots who while being kept
captive in England was using cryptography to protect hidden messages related to her
planned rescue and conspiracy to assassinate the Queen of England. Her messages
were intercepted, meaning that her life depended on the strength of the encryption
used to hide her treasonous messages. Unfortunately for her, they were decrypted
and she was beheaded on the 8" of February 1587.

However, cryptanalysis is not always successful. S. Singh describes a fascinating story
about an ongoing treasure hunt started in the 19" Century. Although with less
dramatic impact it illustrates the difficulties related to cryptanalysis. In 1885 a
pamphlet, The Beale Papers, was published describing the existence of a buried
treasure in the USA. Its location, content and the names of those who buried it were
each protected by a different cipher. The three ciphertexts were given to someone
for safe keeping who never received the key to decipher them. The pamphlet was
the result of years spent conducting their cryptanalysis and only with the second
cipher, related to the treasure’s content, broken. The difficulty only contributed and
still contributes to raise interests among those who believe that story to be true.

The above examples illustrate the two extremes with the motivations and impact
behind cryptology®. Although cryptography can be surrounded by controversy
because it protects the privacy of both the innocent and the guilty, cryptanalysis
usually isn’t, because it is regarded as much as a gift to the attacker as it is a means
to drive better encryption schemes.

' The Scytale cipher is as an example of early cryptography with some research suggesting its usage could be as early as 700BC.
’ One may speculate where academics fit between those extremes!

2. Cryptography Concepts

2.1 Terminology

Cryptography, is the science related to hiding information. With the aim to
provide a combination or all of the following: Confidentiality, Integrity,
Authentication and Non-repudiation. This can be achieved through the
design of cipher algorithms.

Cryptosystem, designates anything related to the encryption and decryption
process and can thus impact its overall security; such as the cipher itself, the
random number generators it uses, how the keys are exchanged between
two parties and how they are stored, etc

Cryptographic primitives, are low level specific components of a cryptosystem
designed to do one specific task and are related to the definition of type of
cipher algorithms, pseudo random functions, etc.

Cryptanalysis, is the study of ciphers, ciphertext and cryptosystems with the
aim of finding weaknesses to decipher data, without necessarily knowing the
secret keys, plaint texts or algorithms used. As long as people have used
ciphers to protect their data, others have tried to break that protection to
alter its confidentiality, integrity or authenticity.

Cryptology, is the study of both cryptography and cryptanalysis.

Plaintext, noted P, is data which in the context of cryptography is not hidden,
thus unprotected. Although historically it would have mainly been referring
to information such as a plain English text, in the computer era it can refer to
anything in numeric form such as a text file, a picture, an executable, etc.

Ciphertext, noted C, is data that has been transformed as a result of a
plaintext encryption. It is protected in the sense it should be hidden to
anyone who hasn’t got the corresponding encryption key.

Encryption, noted E(), also called encipher; it is the process used to transform
a plaintext into a ciphertext. This requires a secret key which will be used to
configure and change that transformation.

Decryption, noted D(), also called decipher; it is the process used to
transform a ciphertext back into a plaintext. This requires the same or a
related secret key to the one used during the encryption process.

Cipher, it refers to the encryption and decryption algorithms. Figure 1
inspired by L. Keliher [2] illustrates the concept of a cipher operation where a
sender encrypts a plaintext P with an encryption key K. into a ciphertext C
and sends it to a recipient who decrypts C back into P with a decryption key
Ky

Ke Kd
. c .
P Encryption : Decrypnon P
Algorithm : Algorithm

G | Gam

Figure 1. Operation of a cipher.

Key Scheduling, is the process to derive subkeys from an original key.

Keyspace, is the set of all the possible keys available to a cipher algorithm. It
is related to the complexity of a brute force attack.

Pseudo Random function, is a function used to generate numbers with
statistical properties of randomness. Because they are not truly random they
are called pseudo random.

Initialisation Vector, noted IV, is a block of bits that can be randomly
generated and is independent from the key used for encryption. It is used to
produce different ciphertexts while using the same key to encrypt the same
plaintext.

n

I1: This is the symbol for n-ary multiplications, i.e.: Hai =a;XaxX..Xan

3: This is the symbol for n-ary additions, i.e.: Eai =a;+ay+.. +ap

i=1

2.2 Types of cryptography

There are two main types of cryptography, one related to symmetric-key ciphers and
one to public-key ciphers. The following definitions are based on the descriptions
written by A. Menezes et al [3].

If for a given cipher it is relatively easy to derive K. from K4 and vice versa, then it is
called a symmetric-key cipher. Because of that relationship between the two keys,
they must be kept secret/private between the sender and recipient. The term
“symmetric” is used because in most implementation K. = Kq4

In contrast, if for a given cipher it is impossible to derive K. from K4 and vice versa,
then it is called a public-key cipher. The two keys are mathematically related and
form a specific pair. One key will be used for encryption and be public while the
other key, used for decryption, will be kept private.

Only symmetric-key ciphers are relevant for this thesis.

2.3 Symmetric-key Ciphers Overview
2.3.1 Stream Ciphers

A stream cipher breaks a plaintext into a stream of bits which are encrypted
sequentially with a stream of key bits, called a keystream. The encryption process is
usually very simple and has the property of having no error propagation. The
keystream is generated by a keystream generator which uses a seed, such as a
random initialisation vector, to initialise the keystream’s sequence. As we will
discuss in section 5.2.1, a keystream should be reused with the least possible
frequency.

A basic and common component of a keystream generator is a Linear Feedback Shift
Register (LFSR) which is designed to “stretch” a key by combining some of its bits to
generate new ones. This should have the property of diffusing the effect of
repetition. An example of a LFSR is illustrated in Figure 2 where a register holds 4
initial bits. The bits 1 and 3 are combined together, all the bits “shift” on the right
with the effect of producing the bit 0 as an output. Then, the register where the bit 4
was located before the “shift”, will be populated with the bits combination just
calculated. The process is repeated as long as an output bit is requested from the
LFSR.

r Bit 4 Bit 3 Bit 2 Bit 1 Bit0 [Output

N
37

Figure 2. Linear Feedback Shift Register Example

2.3.2 Block Ciphers

A block cipher breaks a plaintext into blocks of bits which are then encrypted into a
ciphertext block using a secret key. Usually a n-bits key will be used to encrypt a n-
bits plaintext block.

This type of cipher has different modes of operation; the two which are relevant to
the cipher studied later in Chapter 6 are the Electronic Codebook mode (ECB) and
the Cipher Block Chaining mode (CBC). Both modes are illustrated in Figure 3 and 4
respectively; for N Blocks, where the cipher stops when i=N. Those figures were
taken and modified from the A. Menezes et al. book [4] where the description of
other modes of operation is also available.

Plaintext
Block i

Key —»| Encryption

Decryption |[4— Key

Ciphertext Plaintext
Block i Block i

Figure 3. ECB for Plaintext Block 1<i< N

Ciphertext Block 0
=V £
Ciphertext
< Block i-1)
; '
Block i E Decryption |<—Key

\ \4

Key —»| Encryption A Ciphertext
E Block i-1
. * ‘
Ciphertext Plaintext
Elogkl - Block i

Figure 4. CBC for Plaintext Block 1< i < N, using an IV for the first ciphertext input

10

2.3.3 Block Ciphers Structures

Most of the block ciphers have either a Feistel or Substitution-Permutation Network
(SPN) structure.

The Feistel structure was designed by H. Feistel [5] where a plaintext block is split in
two halves that are encrypted according to the process described below, taken from
M. Stamp and R. Low’s book [6] and illustrated in Figure 5.

Let Lo be the left half of the plaintext and Ry the right half of the plaintext, then
P = (Lo,Ro)

Let N be the number of Rounds, i the round number suchasi=1,2,3,..,n

Let F() be a round function transforming an input block using a key, K;, generated
with a key scheduler, then Li and Ri are generated as follow:

Li=Ri1

Ri=Li1+F(Ri1, Ki)

Let C be the final round output, then

C=(LnRn)

The decryption process simply takes this concept backwards withi=n, n-1, ..., 3,2, 1
Rii=1L;

Li.1 = Ri + F(Ri.1, Kj)

The final round output produces P, the original plaintext:

P = (Lo,Ro)

Encryption: Decryption:
Plaintext Ciphertext
KO " F Kn ', F‘
K [F] Sld

. L
etc... . etc...
Kn .E KD ’E
e
|
v L v
|
Ciphertext Plaintext

Figure 5. Feistel Cipher diagram from Wikipedia.com

11

The SPN structure has two components, a substitution function and a permutation
function. The substitution function, also called an S-BOX, takes input bits and
transforms them into different output bits. The transformation process may vary,
some ciphers such DES [7] have static S-BOX values as illustrated in Table 1, where
the output value depends on the input value. In DES, a 6 bits block is used as input to
one of eight S-BOX where the first and last bit will be used to select a row and the
remaining four bits will be used to find a column. The value at the intersection of the
table will be the four bits long output of the S-BOX. For example, with an input of 18,
the row will be 0, the column 9 and the output 10. Other algorithms can also
implement key dependant S-BOX, where the key used to encrypt a file will change
the behaviour of the S-BOX.

The Permutation function acts as a “mixer” or “shuffler”, the bits themselves are not
transformed but their positions in the block are; hence the output value will also be
different from the input value.

An SPN structure combines those two functions one after the other for a number of
Rounds. For each round the output can be combined with a Key before being used
as an input to the next round, as illustrated in Figure 6 for a 3 rounds SPN using four
S-Boxes and a Permutation function labelled P.

Column Number

S (0] (1 (21 (31 (4] (5] (6] (7] (8] [o] [10] [11] [12] [13]
[0] 4 4 13 1 2 15 11 8 3 10 6 12 5 9 0 7
[1] o 15 7 4 14 2 13 1 10 6 12 11 9 5 3 8
[2] 4 1 14 8 13 6 2 11 15 12 9 7 3 10 5 0
[3] 15 12 8 2 4 9 1 7 5 11 3 14 10 0 6 13

Table 1. DES First S-BOX — From A. Menezes et al Book

PLAINTEXT KEY
n i)
NPa

[TT1 [T11 [T11 [T11

s, s, s, s,

[T [T 11 [T1] [T

P

[[T [TT1 [T [[T]
n K
NP,

[TTT [T [TT1 [TT1

S, s, 1| s, s,

[T [T 11 [T1] [T

P

LI [TT1 [TT1 [TT]
fans K
P

[TTT [T [T [TT1

s, S, || s s,

LI [TT] [TT] [TT]
fany K
P

CIPHERTEXT

Figure 6. SPN cipher diagram from Wikipedia.com

12

2.3.4 Diffusion and Confusion

In 1949, C. Shannon [8] introduced two security properties, diffusion and confusion,
on symmetric-key ciphers operation which are still used today as a guideline for new
symmetric-key cipher designs. The aim of those properties is to mask any
relationships between the plaintext, the ciphertext and the key.

Confusion, aims at masking plaintext and key characteristics, where no information
about the original plaintext and the key used for the encryption should be found by
studying the ciphertext. For example, studying the ciphertexts of large number of
plaintexts encrypted with the same key should not provide information on the key
that was used.

Diffusion, aims at providing ciphertext statistical homogeneity, where no ciphertext
blocks should repeat significantly more than others nor should their repetition
frequency be constant.

A cipher using an SPN network, as described in the previous section, uses
substitution and permutation functions to create confusion and diffusion.

13

3. Cryptanalysis Concepts

3.1 Cryptanalysis and Cryptosystem

When attempting to provide data security, implementing a cipher algorithm is only
one part of the equation. One needs to consider the whole cryptosystem to ensure
the level of security is adequate. This can be illustrated with what is called Quantum
cryptography. It has been arguably held as the holy grail of cryptography for some
time; however, even if this is true it relies on the whole cryptosystem to be
“quantumly” secured [9]. One aspect of Quantum cryptography security is that no
one can eavesdrop without being detected®. This relies on some quantum physics
properties that are not practical if the secured data is moved on, say, my iPhone
which although being able to do many things, is not yet quantum ready!

The point is that cryptography is only one piece of the data security puzzle, and the
full lifecycle of the data being secured needs to be considered, as it will certainly be
by any serious attacker.

When we speak about cryptanalysis, we especially look at the security and ways of
attacking one part of the cryptosystem. Hence when evaluating the security of a
cryptosystem, cryptanalysis is also only one part of the equation.

In this thesis, we will focus on cryptanalysis.

3.2 Historical Cryptanalysis

Most ciphers designed before the computer age era, are vulnerable to three main
types of attacks, secrecy leaks, brute force and frequency analysis.

According to Kerckhoffs’ Principle the security of a cipher algorithm should never be
based solely on its secrecy and should, instead, only be based on the secrecy of the
key. Although not knowing a cipher’s algorithm details makes its cryptanalysis
harder, especially for modern ciphers, early ciphers security were mainly based on
the fact only a few people knew how they worked. However, once understood, the
likes of the Scytale or Caesar ciphers were trivial to break. C. Shannon later built on
this principle and formulated what is known as the Shannon’s maxim: “the enemy
knows the system". For those reasons secrecy based security is still a debatable
concept and not usually recommended.

Brute force, which is also referenced as an exhaustive key search, is when an
attacker will try all possible combinations of keys against a ciphertext until the result
is satisfactory, i.e.: recovering an English text. Ciphers with small key space are
especially vulnerable to this attack, as it would require less time to try all possible
combinations. In practice, the average number of keys to try before finding the
correct one is the number of possible keys divided by two.

* Quantum physic properties mandate that any attempts to measure a photon state will introduce detectable anomalies.

14

Frequency analysis of those early ciphers allowed deducing the plaintext from the
cipher text by looking at statistical language characteristics that are reproduced into
the ciphertext. For example, in the English language the letter e is the most
commonly used followed by the letters t, a and so on. Although different techniques
were used to hide such characteristics with the likes of nulls* and polyalphabetic
ciphers; frequency analysis attacks could be adapted to remain successful. The most
notorious examples are the use of digraph® which was the starting point on how a
200 years old French cipher, The Great Cipher [10], was broken as well as a British
Cipher called Playfair [11]. Also, the famous Vigenére [12] cipher was broken by
combining frequency distribution analysis and reducing the cipher to a
monoalphabetic one; exploiting its cyclical nature.

Other techniques can be used to help analysing the type of cipher used; such as the
index of coincidence [13], which measures the frequency characters should appear
next to each other.

With the advance in computer technology the attacks described above have been
optimised and automated. The ciphers once vulnerable to those attacks became
easily breakable and what was once considered as extremely secure became
obsolete. As a result, modern ciphers became more complex and rely on more
advanced mathematical concepts. However, if history is to keep repeating itself, and
it has done many times in cryptography, what is now considered as unbreakable may
soon be unsecure with some type of mathematical breakthrough. Before this time
arrives though, there are some modern techniques that can already be used to
identify implementation and algorithm weaknesses. Maybe not surprisingly,
statistics still play a major role but this time combined with probability
characteristics.

We will now introduce 6 main types of attacks, used in modern cryptanalysis
techniques.

3.3 Algorithm and implementation attacks

The first step when doing the cryptanalysis of a new cipher is to study its algorithm
to find security flaws and known weaknesses for which some attacks might be
applicable. Those known weaknesses may be inherent to the underlying
cryptography primitives used, for example algorithms based a Feistel cipher [14] may
be vulnerable to linear and differential cryptanalysis attacks described later in this
chapter.

What may also start as a known secured cipher algorithm may end up being badly
implemented and security flaws introduced into the overall algorithm. This could be
referenced as an information technology “translation” issue. A cipher algorithm will
first be written into some pseudo code, which will then be translated into a

* Nulls: Symbols or letters used as blanks and not to represent anything meaningful.
® Digraph: Symbols or letters used to represent a pair of letters. The term Trigraph is used when representing 3 letters.

15

programming language computers understand. This translation process can leave
way of interpretation with disastrous effects on the implementation’s security. In
addition to this, security flaws might be introduced by the author’s ignorance or
desire to “cut corners” as we will see later when looking at the WEP algorithm and
its Initialisation Vector. Another common example is related to random generators
as they usually play a very important role in modern cryptography. They are used to
hide ciphertext patterns when encrypting different or similar plaintexts with the
same key. If the algorithm’s author decided to use a basic computer built-in random
generator based on timestamps to generate pseudo random numbers, it will be
possible to guess those numbers based on the time the encryption took place and
the computer used. Although not a direct attack aimed at the cipher, its indirect
effect can reduce its security strength.

3.4 Known ciphertext attacks

Known ciphertext based attacks are the underlying of most practical attacks because
it is relatively easy to intercept ciphertexts. If the cipher used to generate the
ciphertexts is not known, studying the intercepted information for certain
characteristics may help to identify which cipher algorithm was used and which
attacks may be more efficient against it. Furthermore, ciphertexts are often used to
identify statistical characteristics which may reveal cipher’s weaknesses will be
explained later.

3.5 Known plaintext attacks

This type of attack requires access to ciphertexts as well as the corresponding
plaintexts. This information can be used to identify how an unknown cipher works
and also any relationship between the plaintext/ciphertext pairs which may help
recovering parts of the key used.

Even if only having one of such pairs is of great help, a large number of pairs is often
required to deduce anything of interest. Also, the more pairs encrypted with the
same key the more vulnerable a key may become.

A less academic variant of this type of attack is the probable plaintext attack. This
relies on the attacker to guess some or part of the plaintexts. For example, most
windows users capture information into Microsoft Word Documents which may be
encrypted if sensitive. This type of document will always start with the same or
similar header identifying the document as a word document, those standard
applications “headers” can be found at the start of many different type of
document: HTML, PDF, Emails, etc. A parallel could be drawn here with the “cribs
used to crack enigma during the Second World War [15].

()

® Cribs are parts of a plaintext that can be associated to parts of the related ciphertext

16

3.6 Chosen plaintext or ciphertext attacks

Certain plaintexts may help identifying some characteristics of a key and identify
cipher weaknesses. One could use a series of plaintexts first made entirely of O’s bits,
and progressively introduce 1’s bits to study the effect this has on the resulting
ciphertext. This attack can also be extended to a chosen key attack to study the
effect of weak keys on the ciphertexts.

Again, one less academic variant is a “forced” plaintext attack, where the attacker
forces the victim to encrypt a chosen plaintext. A famous, if maybe a little unknown,
example of such attack happened during the Second World War when on some
occasions the allies in need of new “cribs” would purposely lay mines in the sea at
specific coordinates, for the German boats to find them and warned other boats.
Indeed, once those mines were found, they would send those coordinates encrypted
[16].

This type of attack can also be adapted to a chosen ciphertext attack where chosen
ciphertexts will be generated and the resulting plaintexts pairs studied to identify
potential weaknesses.

3.7 Adaptive chosen plaintext or ciphertext attacks

This is a variant on the previous attack where the attacker may change its chosen
plaintext based on information gathered during the attack. Again, this can also be
applied to the use of adaptive chosen ciphertexts.

3.8 Related keys attacks

Most ciphers use different rounds to encrypt/decrypt data and to increase security
they use “different” keys in each round using what is called, a key scheduling
process. Those keys, called subkeys, are derived from an original key in some ways,
with DES the master key is split in half and each subkey is then rotated by one bit at
each round, with AES [17] a one-way function is used. However different those
methods are, deriving keys implies a relationship between all the keys generated.
Thus, using two or more keys that are related in some special way may allow an
attacker to find the original key. Eli Biham [18] popularized this concept by
explaining that most key scheduling algorithms can be seen as a set of algorithms
which use previously generated keys, or subkeys, to generate new ones. When those
algorithms are the same, then the same operations are repeated for each key
generated and it is possible in some circumstances to run this process backward and
find the original key. This attack is also related to the chosen plaintext attack
described previously.

Those 6 types of attacks can now be used as part of the specific attacks we will now

describe below. A more in-depth explanation will be given to the most commonly
used attacks nowadays, linear and differential cryptanalysis.

17

4. Modern Cryptanalysis Techniques Overview

4.1 Statistical and probabilistic attacks

As modern ciphers have now evolved into more mathematically complex algorithms,
traditional frequency analysis has become obsolete and had to evolve as well. The
same principle remains but introduces the concept of probability and statistic where
Probability relates to the prediction of the likelihood of future events and Statistic
relates to the analysis of the frequency of past events.

Applying this in cryptanalysis means guessing potential weaknesses in a cipher and
analysing how many times those guesses were true in order to improve their
accuracies.

As described later in this chapter, a combination of probabilities and statistics now
underpin most modern cryptanalysis techniques; in linear and differential
cryptanalysis for example, we first look at probabilities to identify potential cipher
characteristics, then select the characteristics with the highest probabilities and
finally look at the statistics of those probabilities holding true to extract information
on the key being attacked.

4.2 Slide Attacks

The outline of this Known/Chosen plaintext attack was first described in 1977 [19]
but only came to maturity in 1999 [20] and was labelled a Slide-Attack by B.
Schneier. It works especially well against the wrong pre-conception that just
increasing the number of rounds in a cipher helps making it more secure, even if it
was weak to start with. This is because it attempts to find weaknesses in the key
schedule and not into how the different rounds impact the plaintext.

The attack requires a large number of plaintext/ciphertext pairs with the aim of
finding two pairs for which the first round encryption of one plaintext is equal to the
second plaintext. Such pair is called a slide pair and if the round function is weak, we
can use that slide pair to extract information on the key being attacked. This is
illustrated in Figure 7, where for two pairs (P, C) and (P’, C’), if F() is the function used
for each round and ‘r’ the number of round in the cipher, then the slide pair we are
looking for should satisfy the following condition: P’= F(P) and C’'= F(C)

p—|F > Fyt— - —»|F |— C
v y
P —>|Fy > Fy t— - —|F > C

Figure 7. A Slide Pair Representation

For a cipher using plaintext blocks of n-bit size, according to the birthday paradox
[21] a slide pair can be found with "2 plaintext/ciphertext pairs. Extensions of this

18

type of attack have also been designed against ciphers with more complex round
functions: complementation slide attack, sliding with a twist and a combination of
the two have been described by A Biryukov and D. Wagner [22]

4.3 Correlation Attacks

This attack is aimed against stream ciphers where a “Divide and Conquer’” approach
is taken to exploit potentially weak keystream generator’s Boolean functions by
studying probabilities on bits correlations between the key and the keystream.

We will explain this attack by using the Geffe Generator as illustrated in Figure 8 This
is a weak stream cipher using three Linear Feedback Shift Registers (LSFR) to feed a
non-linear Boolean function, F(), which combines the input bits to generate a
keystream. The aim is to identify correlation(s) between the bits of the shift registers
used in the LFSR and the output bits of the keystream.

LFSR1 K X
\
LFSR 2 >| F(x,y,2) = Xy @ vz @ 2 |—»Keystream
i

z

LFSR 3

Figure 8. Simple Geffe keystream generator

The key used to generate the keystream will be composed of each LFSR shit register
bits; the X, Y and Z bits. For example LFSR1 may be using 3 “x bits”, LFSR2 may be
using 4 “y bits” and LFSR3 may be using 5 “z bits”; giving a total of a 12 bits key.

The first step of the attack is to list the probabilities for a an input bit of the key (i.e.:
X;) to be equal to the output bit of the keystream. The results are listed in Table 2
where each line is calculated the same way as with the line highlighted in green and
described below:

F=xy®yz®z=0x0®0x1®1=000®1=1

” Divide and Conquer: Breaking down a complex problem into less complex sub-problems in order to find a solution more easily

19

0 0 0 0
0 0 1 1
0 1 0 0
0 1 1 0
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 1

Table 2. Boolean function output table

From the above table we can see that 6 times out of 8 we have F=x giving us a
probability of % which is higher than the expected truly random probability of %. This
is called a correlation. We can exploit this information to find the correct value of the
X bits part of the key. To do that, we combine this attack with a known plaintext
attack. Because a stream cipher is of the form: P; ® Keystream; = C;, knowing the
plaintext and the corresponding ciphertext will also give us the corresponding
keystream. The idea is to initialise the targeted LFSR with all possible shift register
values, generate of stream of X; bits and compare it with the keystream. Once we
found a match % of the time we can assume the guessed initial X bits were correct.
We can then either try to find other correlations, this time for the Y and Z bits or
brute force the rest of the key.

When designing a keystream generator it is therefore very important for it not to
leak information of the individual shift registers used by the LFSR. This is called
correlation immunity.

4.4 Time-Memory Trade-Off

A Time-Memory or Time-Space Trade-Off consists in finding the balance between
the data storage space and time performance. It is usually referenced as TMTO. In
some computer science operations increasing the storage of pre calculated data can
increase the speed of execution. However, when those operations occur either on
extremely large fields or infinite fields, the data storage required may force the use
of slow storage medium such as using a Hard-disk instead of memory, or may even
just be too large to be feasible.

Below are some cryptanalysis techniques based on this concept.

4.4.1 Meetinthe middle attack

This existence of this attack, which was first described by W. Diffie and M. Hellman
[23], is the reason why Double DES (2DES) is not a strong algorithm. This is because
although using two different keys of size n to encrypt a plaintext does indeed mean
an exhaustive key search would require 2" keys; it does not however mean that the

20

complexity of this attack is of the same order, instead it is only of 2™ thanks to the
birthday paradox®.

We can demonstrate this by attacking the 2DES concept where a plaintext P is
encrypted twice with two different keys, K1 and K2, we then have C = Ei;(Ex1(P)).
The attack is a known plaintext attack and breaks the algorithm into two parts, an
encryption and a decryption. The ciphertext will first be decrypted with all possible
values of K2 to generate all possible Ex,() values representing Ex;(P) and the results
stored into a “table”. The second part will use the plaintext and encrypt it with all
possible values of K1 to generate all possible Ex;() values also representing Ex:(P). We
will then have to lookup where there is a match of Ex;(P) values for both K1 and K2,
when this occurs we would have “meet in the middle” and found the correct values
for both keys.

4.4.2 Hellman’s TMTO

M. Hellman extended the previous attack into what is called the Hellman Time-
Memory Trade-Off Attack [24]. It was first designed against DES but can be adapted
against any block cipher. It is a chosen plaintext attack in the sense the same
plaintext has to be encrypted by different keys a number of times.

The aim of this attack is to find the key used to encrypt a known plaintext P and for
which we have intercepted the corresponding ciphertext Z. The main concept is to
conduct some sort of recursive encryption E;(P) where the resulting ciphertext, C,
will be used as a key for the next iteration. Therefore, the key has to be the same
size as the ciphertext but this is not always true. For example, DES uses a 56 bit key
to produce a 64 bit block; we can is this case use a simple reduction function R[] to
remove the last 8 bits of the ciphertext”.

This technique can be described with the 4 steps below:

Step 1
We randomly choose M number of keys from the cipher’s key space as Starting

Points (SP)

Step 2

We conduct T number of encryption iterations, R[Ex(P)], as described below:
M T

With Xli,0= SP; we calculate Xli,j = R[Ex;-1(P)]
i= J=

Where i relates to the Starting Point key and j relates to the number of encryption
iterations.

8 Birthday paradox: It gives us a complexity of 2" but because we are conducting two operations in this attack, an encryption
and a decryption, the complexity is of M
° Reduce function: Any bits can be removed and the number of bits to remove depends of size on the key/ciphertext

21

With EP standing for Ending Point, the attack workflow is:
SPl = X1’0_> X1’1_> X1,2 _>X1'3_> —> Xl,T = EPl
SPz = X2’0_> X2’1_> Xz,z _>X2'3_> —> XZ,T = EPZ

SPM = XM’0_> XM’1_>XM’2_>XM’3_> —» XM,T = EPM
The (black) intermediate points will be discarded and only {SP,EP}, will be

recorded into a table sorted on End Points. From the workflow above we can see
that M refers to the Memory/Space and T to the Time/Number of operations
required. Defining the values of those variables will be explained in the next section.

Step 3
To attack the intercepted ciphertext Z we have to compare its reduced form R[Z]

with the EP; ciphertexts to find a match. If we do, then we know the key used was

the second last ciphertext generated for that EP; which is X; r.;.However, this is an

intermediate point which has not been stored, hence we will have to calculate the
chain again using the corresponding SP; to recover the key X; r.;.

Step 4
If we did not find a match we then use the R[Z] as the only Starting Point key and

follow a similar process described in the previous steps:
T
With Xo = Erjz(P) we calculate Xoj = R[Ex;(P)]
J=

We stop if either X; matches one of the EP; ciphertexts to recover the key Xjr.j.1)
or if no matches were found after T iterations.

4.4.3 Complexity and Success of Hellman’s TMTO

When defining the values of M and T, a trade-off is needed between the M number
of keys to be pre-calculated as Starting Point and the T number of encryptions to do
before reaching an End Point.

Also, there is a number of false positives to consider due to key collisions and the
reduction function R/[]. Indeed, that function has an impact on the ‘r number of
tables required by this attack.

Hellman suggests that the probability of success can be defined as:

P(success) = 1- e M7/

And with k being the keylength used, M=T=r= 23

Explaining why this is true is beyond the scope of this thesis and a more
approachable explanation than Hellman’s original can be found in M. Stamp and R.
Low’s book on cryptanalysis [25] where it is concluded that this technique, which can
be applied to any block cipher, has the particularity of requiring “no knowledge of
the internal workings of the underlying cipher”.

22

4.4.4 Extensions of Hellman’s TMTO

This technique was improved by R. Rivest shortly after it was first published, it
introduces the notion of distinguished points [26] to optimize the size of the stored
values by allowing for a dynamic value of M.

It was further improved in 2003 by P. Oechslin [27] who introduced the notion of
Rainbow Tables. It uses a different reduction function for each encryption iteration
and thus does not need distinguished points or multiple tables. However, the latter
can still be used to improve on the key recovery probability of success but at a
Memory and Time cost. This technique was successfully implemented against the
Microsoft LAN Manager Password Hash as described in Chapter 5.

Finally, the Distinguished Rainbow Points method [28] is an ongoing project based on
a combination of the two previously mentioned extensions. It is interesting to note
that this new technique is being designed for COBACOBANA [29] which is a hardware
cryptanalysis framework primarily aimed at DES.

23

4.5 Linear Cryptanalysis
4.5.1 Introduction

In Mathematics a Linear mapping is a function between two vector spaces where the
vector addition and scalar multiplication structures of the two are preserved.

The main issue for the cryptanalysis of an S-box used in a cipher is that it is using a
nonlinear mapping, which means if x represents the input bits and y the output bits,
there is no linear function of x solving y. Linear cryptanalysis attempts to find linear
functions/equations between input and output bits, this is done by guessing linear
approximations of S-boxes.

This type of attack was first described by M. Matsui and A. Yamagishi in 1993 [30]
with 2 different algorithms; but only the second algorithm offers real cryptanalysis
value. Although it was first designed to work against the FEAL[31] cipher, it was also
later successfully adapted to work on DES and other type of ciphers using structures
such as Feistel, SPN, etc

4.5.2 Linear equations

In this type of attack, a linear equation is defined as follow:

Let each element A, B, C and X be binary elements with a value of either 1 or 0
Let @ represent an eXclusive OR (XOR)™.

fA®B®C=Z

Then due to the commutativity of XOR we also have

ADPB®CDZ=0

For example: 1®0® 1 =0because (1®0)=1andthen1®1=0
and we alsohave: 1®@0®1®0=0

Let X represents an input element from the plaintext, Y represents a group of output
bits from the key/subkeys and let “i” be a specific bit of those elements. For
example, X;, represents the bit number i of the X element and X3 would therefore
represent the 3" bit. The input element is also usually broken up into several blocks
of bits, say 4 bits, hence for an input element of 16 bits the following blocks of bits
will be defined: [Xy, Xz, X3, Xa], [Xs, X6, X7, Xgl, [Xo, X10, X11, X12], [X13, X14, X15, X16]

The bit length of an element will be represented by “n”. In the example above, n=16

Those linear equations will relate Input and Output bits, but they do not have to be
“paired”, or equally represented. Hence the following equations could be selected:
X; @Y =0 (Paired)

X; @ Ys =0 (Not Paired)

Xo®@X,®DY1=0

XX @Y1 @Y, ®Y3=0

Also, the opposite equations, called “affine” can also be considered: X; ®Y; =1

“XOR:0®0=0;1@®1=0and the opposite, 0®1=1;1®0=1

24

4.5.3 Linear Cryptanalysis Concept

Linear cryptanalysis is a known-plaintext, probabilistic and statistical attack using M.
Matsui second algorithm to focus on the last subkeys that are generated and can be
used to gain information on the key itself, on which those subkeys are based.

The main concept is to approximate the cipher algorithm into a system of linear
equations, of the form shown above, where the inputs and outputs bits are
somewhat related with the aim of recovering some of the bits from the key used for
encryption. It can be achieved because for a cipher to be “perfect” it would require
to provide a perfect diffusion and confusion; no cipher being perfect this type of
attack attempts to exploit those weaknesses.

Those cipher algorithm imperfections mean that for a given input bit, the related
output bit probability of being 0 or 1 isn’t exactly %. That difference, called a bias,
between a perfect probability of %2 and the measured real probability of a linear
expression is what linear cryptanalysis is focusing on, the bigger the difference and
the more likely we are to find information on the original key used. The bias of a
linear equation/expression, represented as “e”, is the absolute value of the
probability of that expression being true minus %:

e=|p-%]|

4.5.4 Step 1- Linear approximation of an S-Box

The first step is to build a full linear approximation of all the S-Boxes used in the
cipher by trying all possible linear equations and record the results, that is, how
many times they hold true. This will produce a Linear approximation table for the S-
Boxes. This means we will be calculating all the probability values and biases for each
possible combination of input and output bits.

The rest of this section is based on the excellent example given in H. Heys’ Linear and
Differential Cryptanalysis tutorial [32]. We will consider a basic 4 rounds SPN cipher
using the same S-Box through. Each S-Box will be taking 4 bits as input to produce 4
output bits and will be using the first line of the first DES S-Box as defined in Table 3
There will be a total of 4 S-Boxes per round and the output of those S-Boxes will be
XORed with a subkey derived from a master key used to encrypt the plaintext.

Input 0O |1(2 (3(4 |5 |6 |7 |8 |9 (1011|1213 (14|15
Qutput |14 |4 |13|1 |2 |15|11(8 |3 |10|6 [(12|5 |9 |0 |7
Table 3. S-Box Representation of the 16 possible output values.

25

Because we are using the same S-Box through the cipher we only need to look at the
linear approximation of the one S-Box Using all possible input values we will be
recording each time linear equations such as X; @ X4 = Y5, which is graphically
represented in Figure 9, are true and we will have to do this for all possible linear
equations.

Figure 9. A graphical representation of X; ®@ X; = Y, on a 4-bit S-Box

The Table 4 below illustrates a manual process to record the findings of one linear
equation. The columns shaded in blue, highlight the bits that have been used while
the cells shaded horizontally in green, show when that equation is true.

X1
X1 | Xo [X3 [Xg QY1 | Y2 |Ys|Ya]® | Y2

Xa
O 0|0 |OjJ1 |1 |1 |0]JO |1
O 0|0 |10 1|1 |0 |0]1 |1
O 0|1 /0§11 |0 |1]0 |1
O 0|1 |1)0]0 |0 |1}J1 |0
0O 1|/0|0jJ0O0 0|1 |0jJ0 |0
O 1/0 /19§11 |1 |1]1 |1
O 1{1 010 (1 (130 |0
O 1|1 1)1]0 |0 |01 |0
1 /0 (0|00 |0 |1 |17})1 0
10 (0|11 0|1]07})0 |0
10 (1|00 |1 |1]0}1 |1
10 (11 Q1|1 |0 |0}J0 |1
1|10 |00 |1 |0 |1]1 |1
1|1 /01100 |17}30 |0
111|030 |0 |0 |0O}J1 |O
1|1 (1130 |1 |1 |1})0 |1

Table 4. Sample linear approximation — Modified from H.Heys’ Tutorial

According to the results, that linear equation is true 8 times out of 16, hence the
probability bias is /16 — % = 0. This means that equation is not very interesting as we
are looking for large biases.

Instead of manually trying all possible linear equations until we find the ones with a
large probability bias, this process is automated/programmed. A table summarizing
the number of times all linear approximations are true for of a given S-Box is
produced, as shown in Table 5

Output SUM

26

0 1) 3 4 5 15

0 8 0 0 0 0 0 0

1 0 0 -2 -2 0 0 0

2 0 0 2 -2 0 0 2

3 0 0 0 0 0 0 -2

%74 0 2 0 -2 -2 -4 0

25 0 2 2 0 2 0 0

2 g 0 2 -2 4 2 0 2

7 0 -2 0 2 2 -4 2

8 0 0 0 0 0 0 -6

9 0 0 2 -2 0 0 2
15 0 -2 -4 -2 -2 0

Table 5. Linear Approximation Results Table — Modified from H.Heys’ Tutorial

Each linear equation is represented by using numbers for the input and output sum
parts of the equation. Looking at the linear equation we used previously, X; ® X; =
Y,, the result has been highlighted in shaded blue in the above table and itis indexed
with:

Input sum=X; @ X, =1001=9

Output sum =Y, =0100=4

Because we are interested in biases which are expressed as e = p— % and we are
using a 4-bit S-Box with 16 possible values, the biases can be calculated as
e="e=Y%= (n—8)/16

Hence, the results in the above table are the number of times each linear equation
was true minus 8; to calculate the bias that value then needs to be divided by 16.
This allows to quickly identify linear approximations of interest, those with large
biases, and eliminate the ones with no or small biases. l.e., a result of 0 in the above
table means the bias is also equal to 0 as 0/16 = 0.

4.5.5 Step 2 - Linear approximations for the complete cipher

The second step is to study the linear approximations of the full cipher, from start
(plaintext) to finish (ciphertext) through all the rounds of the cipher up to the second
last round. This is achieved by concatenating selected linear approximations of S-
Boxes from each round, which we call linear approximation scenarios. The aim is to
find scenarios with large linear probability bias.

Such scenario has been graphically represented in Figure 10 with the following linear
approximations:

S11: X171 @ X1,3® X14 = Y1, (the index represents a round number and bit position)
$21:X2,=Y22,®D Y4

S31: X3,=Y3,® Y34

$32: X36=Y36® Y33

27

(Clear Text)

Xo0,1 *0,3 | 0,4 || e
[XOR Subkey 1 oo
X [X130 %14 | 1 __ 1 JstRound
|
S11 S12 I
|
-
4 ><
l
| XOR Subkey 2 -
IX2.2 _ 1 _2nd Round

|
R
| XOR Subkey 3 -
| X3’2 .- 1 _3rd Round
|
|
|
L -
Y32
_ -
| XOR Subkey 4 o
Xa,2 X4.4 Xa6 Xa,8 14th Round
F-ion
|
s41 542 |
|
[[B I
I |< K51>Ks4 O XORSubkey5 K56 K5g |> IRSLE Y
I I I
(Cipher Text)

Figure 10. Sample Linear Approximation — Modified from H.Heys’ Tutorial

Highlighting the “extremities” in red, we have the following linear equation:

Xo,1 @ Xo,3 @ Xoa® Xa,2 D Xaa ® Xag ® Xag=

Xl,l @ X1,3 @ X1,4 @ Y1,2 @ XZ,Z @ Y2,2 @ Y2,4 @ X3,2 @ Y3,2 @ Y3,4 @ X3,6 @ Y3,6 @ Y3,8

The right side of the equation is made of the subkey bits in between the extremities
used to construct the linear approximation. Their values will depend of the key and
derived subkeys used and will therefore be unknown, their sum will either be equal
to 0 or 1. However, the linear approximation scenario required must have its input
and output bits equaI such as: Xo’]_ @ X0’3 @ X0’4= X4’2 @ X4’4 @ X4’5 @ X4’8

Which means we must also have: Xo,1 @ Xo3® Xo,a® Xa,2 D Xg0 D Xag @D Xg5=0

Therefore if the subkey bits sum is equal to 0 then this approximation holds true and
the sign of its bias is the same as the subkey bits sum’s bias. If it was equal to 1, then
the sign of its bias would be the opposite. This, however, has no overall influence as
we are only interested in the absolute value of the bias.

28

To calculate the bias of those combined linear expressions we cannot just multiply
each linear expression’s bias together. For this, we need to use the piling-up lemma
principle as described by M. Matsui.

4.5.6 Step 3 - Pilling-up lemma

Let X; be a binary element of an S-Box. If p; is the probability of P(X; = 0) being true,
then 1-p; is the probability of P(X; = 1) being true and the piling up lemma for 2
elements is:

p1 fori=0
P(X1=1) =
fori=1

1-py

P2 fori=0
P(X; =1) =

1-p, fori=1

And P(Xl @ Xz = 0) = P(X1 = O)P(Xz = 0) + P(X1 = 1)P(X2 = 1)
=p1p2 + (1-p1)(1-p2)
=p1p2 + (1 —p1—p2 + p1p2)
=2pip2—p1—p2+1

If we now replaces p; with % + e; as explained in section 2.6.3, we have:
P(X1® X, =0) =2(%+er)(Vi+e)—(Va+er)—(Yr+e))+1

=%+ 2e1e2
The probability bias for X; @ X; = 0 is therefore 2e;e; and is noted as e ,= 2e;je;
The same principle can be used for a linear expression with n elements and the
following deducted:

n-1 | |
€12,.n=2 = €;
i

In the previous Figure 10 the linear equations had the following probabilities and
biases:

S11 Linear equation had a probability of **/1¢ and a bias of +%

$21 Linear equation had a probability of /15 and a bias of -%

$32 Linear equation had a probability of /15 and a bias of -%

$33 Linear equation had a probability of */1¢ and a bias of -%

Applying the pilling up lemma described above, the concatenated linear expression

bias is therefore:
e=2’ (% x -Yax Yax-1) = /056 = /2

29

4.5.7 Step 4 —Target partial subkey attack

Once large biases are found, the fourth and final step is to apply those scenarios to a
number®! of plaintext/ciphertext pairs encrypted with the same key that is being
attacked and record when they hold true.

The last subkey bits involved in the linear approximation will be the target of the
attack, they are called the target partial subkey and have been highlighted green in
Figure 10. All possible values, meaning combination of bits, of this target partial
subkey will be used against each plaintext/ciphertext pair. Each time, the ciphertext
will be partially decrypted using the target partial subkey to generate the lower end
of our linear approximation scenario extremity (Xa,, @ X0 @ Xa,6 ® Xa,5), this will
then be compared to the upper end extremity (Xo,1 @ Xo,3 @ Xo,4) which we know, as
they are bits of the plaintext. If the two extremities are equal then the scenario is
true for that value of the target partial subkey and a “True” count on that value is
incremented.

Once this is finished, the value of the target partial subkey with the highest “True”
count can be assumed to be the correct one. It can be interesting to calculate what
H. Heys describes as a bias magnitude for each “True” count, because you would
expect such number to be very close to the linear approximation scenario bias (i.e.:
|-Y/32]). For ‘N’ number of plaintext/ciphertext pairs, this can be calculated as:
|bias| = |“True” count—N/2| /N

4.5.8 Search Algorithm

One of the most difficult parts of linear cryptanalysis is to define good or best linear
approximations. Different algorithms have been designed to help find those
preferred approximations, the 2 most notable ones are the Matsui Linear Expression
search algorithm [33] and an improved version published a year later [34].

4.5.9 Success and Complexity of Attack

For linear cryptanalysis to be successful a number of factors are required:

- Alarge number of plaintext/ciphertext pair is required

- The linear approximations of each S-Box should be independent. The reality
is that they are not, thus impacting probabilities calculation accuracy.

- The function deriving subkeys from the encryption key is not a one-way
function, so once parts of the last subkey are found it is possible to reverse
back to some original encryption key bits. If a one-way function is used, there
are still two less efficient ways to use this type of attack. The first option is to
make your way up to the original key by attacking the previous subkey once
one has been found. The second option is to switch to a brute force attack on
the key once one or X number of subkeys have been found as it still reduces

" Number of plaintext/ciphertext: it depends of the scenarios’ biases and is explained later in that section.

30

the overall time required to brute force the encryption key by removing one
or X number of round of complexity.

The larger the linear approximation scenarios bias and the better the chances
to recover part of the last subkeys. This means it is preferable to involve
Linear Approximations of S-Boxes with large biases. It also means the number
of S-Boxes involved overall needs to be kept to a minimum while designing
the scenarios as S-Boxes probabilities are multiplied by one another and thus
reducing the overall scenario bias (See The Pilling Up Lemma).

This type of attack is mainly used against block ciphers even if it can and has
been adapted against stream ciphers. J. Golic has discussed in different
papers its generic concept [35] as well as a specific attack on the Bluetooth
stream cipher [36]

The complexity of the attack will depend on a number of factors as well:

The number of plaintexts required for a decent attack success rate is
proportional to the Linear approximations scenarios biases and
approximately equal to r x /e, where ris a ratio which does not affect the
overall complexity of the attack, hence the number of required plaintexts is
often only referenced as e, In our previous example where the scenario’s
bias was -/, the number of plaintexts required was therefore:

(-Y32)% = (2°)? = 2'° = 1,024 which can be approximated to 1,000.

It is important to note that depending of the cipher being attacked, that ratio
might increase, for example Matsui describes in [37] a number of 8e”
plaintexts to provide a 96.7% success rate against DES and E. Biham uses the
same ratio in [38] to describe a 78% success rate against FEAL-8. Although
this does not affect the complexity of the overall cryptanalysis, it can have a
non negligible impact on the number of plaintexts required and its real world
feasibility; i.e. 8 more times of plaintext to be intercepted.

For this attack to work, its concept has to be adapted to most ciphers being
targeted. The complexity of a cipher has an impact on the difficulty of
approximating linear equations out of non linear equations.

Only parts of the key bits are recovered and it is usually combined with a
brute force attack on the remaining part of the subkey. Furthermore, this
attack is based on guesses, of which some can be wrong; however, correctly
guessing a number of subkeys will reduce the difficulty of the brute force
attack and can save valuable time.

31

4.6 Linear Cryptanalysis Variants
4.6.1 The Linear Hull Effect

Linear Cryptanalysis is a powerful attack that has been widely used for some years;
however, because it is using a lot of bias approximations, those biases can
sometimes be inaccurate. This is called the Linear Hull effect and was first described
by K. Nyberg [39]. It occurs when some linear approximation scenarios involving the
same initial input and final output bits can be achieved using different linear S-Box
approximations, thus different subkey bits. Scenarios that individually have small
biases may be combined to produce a new scenario with a much larger bias and less
complex attack. A more in-depth study on the applicability of this concept can be
found in L. Keliher PhD thesis [40].

4.6.2 Multiple Linear Approximations

This variant was first presented by B. Kaliski and M. Robshaw [41]. The main concept
is that instead of working on a large number of plaintext/ciphertext pairs, the focus
is on a limited number of such pairs but with a much larger number of linear
approximations used against the same targeted key bits.

For each round, different linear approximations involving the same subkey bits will
be used and their results, meaning the combined total counts of when they hold true
will be weighted as follow:

Let U represents that new combined total counts. Let T represents the number of
time each linear approximation holds true as explained in the 4.5.4 section, Table 5
Let e represents the biases and let N represents the total number of
plaintext/ciphertext pairs.

N
U= DT x

i=1 Eej

j=1

‘U’ will have a similar bias to the T’s but with a reduced variance resulting in the
need of less plaintext/ciphertext pairs for a successful attack. Although this
technique never really saves the cryptanalyst much time and is mainly used to
optimise attacks when limited plaintext/ciphertext pairs were available, recent
progress seem to show a possible speed improvement over a simple linear
cryptanalysis. Such framework has recently been described in by A. Biryukov, C. De
Canniere and M. Quisquater’s paper [42].

4.6.3 Other Variants

The following other variants which may be of interest were found in the
Encyclopaedia of Cryptography and Security [43]:
- Key-ranking which is a trade-off between data and time analysis [44]
- Partitioning cryptanalysis which “studies correlation between partitions of
the plaintext and ciphertext spaces” [45]
- Chi-square cryptanalysis which is a form of side channel attack [46, 47]
- Non-linear approximations [48]

32

4.7 Differential Cryptanalysis
4.7.1 Introduction

This type of attack is often associated and explained in conjunction with Linear
Cryptanalysis of which it is pre dating. It was first published by E. Biham and A.
Shamir in 1990 as an attack on DES [49] and is one of the most important discoveries
in modern cryptanalysis. However, it was also independently discovered as early as
the mid seventies by the NSA'? and IBM. Because of the strategic advantage of
knowing such technique against many ciphers it was never publicly acknowledge
until 1994 [50]. Some recently declassified top secret NSA documents about
American Cryptology during the cold war offer an interesting insight on secrecy of
knowledge and has been comprehensively summarized by T. Johnson [51]

4.7.2 Differential

This attack focuses on differential defined as follow.
For a set of N input bits X = [X; X5 ... X,] and N output bits Y = [Y1 Y, ... Y,], we consider
two sets of inputs noted as X’ and X”” and the related two outputs Y’ and Y.

The input difference is AX = [AX1 AX; ... AX,] where AX; = AX'; @ AX”;
And the output difference is AY = [AY; AY; ... AY,] where AY; = AY'; ® AY”;

A differential is a pair (AX, AY), where for a given set of input differences, AX, the
corresponding output differences, AY, have also been calculated. It should be noted
that although a difference calculated using a XOR is the most common, other forms
of operation is also possible.

4.7.3 Differential Cryptanalysis Concept

Differential cryptanalysis is a chosen-plaintext, probabilistic and statistical attack; it
uses a similar structure to Linear cryptanalysis but instead of focusing on the linear
approximations of input and output bits of S-Boxes it focuses on the relationships
between the differences of a pair of input bits set and the differences of the
corresponding pair of output bits set.

The main concept is to carefully select plaintexts and study the generated
ciphertexts to extract information of the key used. This is achieved by defining full
cipher differential characteristics where for a set of plaintext pairs their differential
inputs should generate specific differential outputs. Those pairs will be encrypted
and when a differential characteristic holds true, the related last subkey bits will
then become the target of the attack; likewise with Linear Cryptanalysis this will be
called the target partial subkey and a similar attack process will be followed: a partial
decryption by using all the possible target partial subkey values combined with a
count of when they hold true.

2 NSA: The USA National Security Agency may have known about this technique much earlier than in the seventies.

33

4.7.4 Step 1-S-Box Differential

The first step defines the differential characteristics for each round; this is when the
output differences of one round are used as the input differences of the next round.

For each S-Box with input X and output Y, all possible values of X will be used to
calculate all possible values of Y. With this information and by selecting some
differential input values, AX, it will be possible to deduce the corresponding
differential output values, AY, and a count of those differential occurring will be
recorded into a difference distribution table/list similar to the one used in Linear
cryptanalysis. However, unlike Linear cryptanalysis we are not looking for large
biases, hence there is no need to deduce 8 to the count of occurrences but to
calculate the differential probability it is still required to divide by 16 when using 4
bits S-Boxes. What we are looking for is large probabilities, if the S-Box was ideal
each differential would be equal to 1/16 but this is mathematically impossible and
for N number of input bits, a large probability for (AX, AY) is a probability which is
much larger than 172",

With most cipher the keys have no effect on the differential, but in some it does and
this mean a more complex differential calculation. This is the case with the blowfish
cipher for example where the S-boxes behaviours are determined by the key
themselves.

4.7.5 Step 2 — Differential characteristics for the complete cipher

The second step focuses on differentials with a high probability and involving a small
number of subkey bits.

The most highly probable differential characteristics will be combined together to
define differential characteristics for the entire cipher with an initial AX, from the
plaintext, and a final AY from the ciphertext. Such characteristics define the values
of (AX, AY) for which they hold true. The S-Boxes which are not impacted by the
differential characteristics will use zero differentials as inputs and outputs. Those
impacted will have non-zero differentials as input and be called active S-Boxes. As
with Linear Cryptanalysis, it helps to represent those differential characteristics into
a similar diagram to the one show in Chapter 4.5.5, Figure 10.

4.7.6 Step 3 —Target partial subkey attack

The final step, using the previous information, involves generating pairs of plaintexts
for which the initial differential input holds true. Those plaintexts will be encrypted
and each time a full cipher differential characteristic holds true for a given input pair,
such pair will be identify as a right pair as opposed to a wrong pair when this is not
the case.

The subkey bits related to the most highly probable right pair will be used as target,
likewise with Linear cryptanalysis this will be called the target partial subkey. All
possible values for that partial subkey will be used to partially decrypt the ciphertext
and a count will be kept of the subkey values for which the corresponding input
differential is true. The subkey value with the highest count will have a high
probability to be correct and the rest of the key can then be brute force.

34

4.7.7 Success and Complexity of Attack

For differential cryptanalysis to be successful a number of factors are required:

A large number of chosen plaintext/ciphertext pair is required; this makes
this attack less likely to succeed in the real world as it no longer only relies on
intercepting data but also modifying or influencing it.

Each S-Box differential characteristic probability should be independent. The
reality is that they are not, thus impacting probabilities calculation accuracy.
The larger the differential probabilities and the smaller number of active S-
boxes, the better the chances to recover part of the last subkeys.

As with Linear Cryptanalysis not using a one way function to generate
subkeys is also a requirement and the right balance needs to be found
between the number of subkey bits to extract and the number to brute force.

The complexity of the attack will depend on a number of factors as well:

Exactly defining the number N of chosen plaintexts required is very complex
but a good approximation is N = 1/P4 where P4 is the probability of the
second to last round differential characteristic. That probability, Py, is
calculated by the product of each active S-Box differential probability as
defined in the full cipher differential characteristic.

Some ciphers have been designed to resist this type of attack by purposely
increasing the number of active S-Boxes and keeping the S-Boxes difference
pair probability to a minimum.

The right balance needs to be found between the number of subkey bits to
extract and the number to brute force.

35

4.8 Differential Cryptanalysis Variants

A number of new attacks based on Differential Cryptanalysis have been designed
since the original concept was first made public, the following variants overview can
be found in more details in C. Swenson’s recent book on Cryptanalysis [52]

4.8.1 Differential-Linear

The first variant combines the 2 main attacks previously described, Linear and
Differential Cryptanalysis. It was first described by S. Langford and M. Hellman [53].
The idea is to use the differential of linear approximation scenarios applied to
plaintext pairs to reduce the number of plaintexts required to conduct a successful
attack. This is done by generating plaintext pairs slightly differently than the method
described in standard differential cryptanalysis where a plaintext is first generated
then XORed with a fixed value (i.e.: AX) to generate the corresponding plaintext pair.
In this attack, plaintext pairs will be generated by swapping certain bits of a given
plaintext for which the linear approximation scenario has the same effect. This also
has the advantage of providing a more efficient ratio of generating plaintext pairs of
3 pairs for 2 plaintexts as opposed to the default 1 pair for 2 plaintexts.

4.8.2 Conditional Characteristics

This attack was first described by I. Ben-Aroya and E. Biham [54] against ciphers
using the key itself to modify their cipher characteristics, i.e. how the S-Boxes are
defined; specifically the two ciphers Lucifer [55] and Randomized DES (RDES) [56].
With standard differential cryptanalysis such ciphers are very difficult to attack. The
idea is to define characteristics which are also key-dependant, called Conditional
Characteristics, to maximize their probability when using only a limited key space at
a time. RDES which is more difficult to attack than DES using differential
cryptanalysis becomes overall less complex to attack by using conditional
characteristics.

4.8.3 High Order Differentials

In response to some ciphers designed to get more uniformed S-Boxes differences to
resist differential cryptanalysis, a new attack called High-Order Differentials was
created. It was first described by L. Knudsen [57] and extend the original
cryptanalysis by focusing on the study of differences between differences.
Differential cryptanalysis only uses first order input/output differentials; for
example, AX and AX’ are two first order input differentials. In this new attack, the
following input differential is considered: AX*> = AX @ AX’ where ‘2’ refers to a
second order input differential. It is also possible to have a third order, fourth order
and so on; hence for n'" order we have: AX" = AX™' @ ax’™?

4.8.4 Truncated Differentials

This attack was also first described in L. Knudsen’s paper referenced above. It
attempts to make use of truncated differentials or in other words partial differentials
for which only part of the input differences are required to produce part of a specific
output differences. The advantage is the possibility of recovering bits of a target

36

partial subkey even when a complete differential characteristic does not hold true.
However this may decrease the accuracy and increase the effort required to conduct
a successful attack. This was highlighted by B. Schneier who estimates a successful
attack on its Twofish [58] algorithm would require 2'% chosen plaintexts in response
to the Truncated differential cryptanalysis paper written 5 years earlier by S. Moriai
and Y. Yin [59].

4.8.5 Impossible Differentials

This attack was first presented by A. Shamir and a video of his generous seven
minutes presentation is available online [60]; instead of focusing on highly probable
differences, it focuses on differentials that are impossible, hence with a probability
of 0. Finding such impossible differentials was described in a technique called miss in
the middle attack [61] which consists in generating an input and output differentials
and roll back each end of the differential until the two comes to a contradiction,
meaning they do not match. When this occurs, the related subkeys value will be
discarded as a potential candidate until only one subkey value candidate remains.
This type of attack also applies to other form of cryptanalysis such as Linear and
Differential cryptanalysis and some of their variants.

4.8.6 Boomerang Attacks

Differential Cryptanalysis exploits differential characteristics of the full cipher; this
attack focuses instead on differential characteristics only of part of the cipher.

D. Wagner, who first published this technique [62], describes a technique of
differential meet-in-the-middle attack where the cipher encryption workflow is
broken into two stages. This allows for attacks when no suitable differential
characteristics have been found for the full cipher.

For Py being a plaintext, Cy the corresponding ciphertext, E;() the it stage of the
encryption function and E;() the it stage of the decryption function, then breaking
the cipher into two parts can be represented as:

Co = E(Po) = E1(Eo(Po)) for the encryption process and

Po = E(Co) = Eo™(E1(Co)) for the decryption process.

The first part of the attack creates differential characteristics for the first stage of the
encryption process, Eo, and the second stage of the decryption process, E;*. The
second part derives a new differential related to where the encryption and
decryption stages “meet”. Then, this new differential is combined with a plaintext
and corresponding ciphertext to derive four differentials, referred as a quartet, and
will be used when holding true to attack the key.

This variant has also been itself extended in a number of other attacks such as the

Amplified Boomerang attack [63] aimed at helping to identify the right quartet and
the Rectangle attack [64] with the additional aim to improve the probability of the
attack.

37

4.8.7 Related Key Attacks in differential cryptanalysis

The Related Key attack described previously in section 3.8 can be adapted to
Differential Cryptanalysis where different values of the key being attacked are used
to generate differentials.

Until recently this variant was considered as unpractical and with limited success
potential. As of August 2009, it seems this could not have been more wrong. As
discussed later in this thesis, this variant combined with the Boomerang attack has
become the basis of a new wave of promising attacks against AES.

38

4.9 Other Cryptanalysis Attacks

Below is a brief summary and references to other relevant cryptanalysis attacks.

4.9.1 Integral Cryptanalysis

This attack was designed by L. Knudsen [65] against the Square cipher [66], it is
therefore also known as the Square Attack. It is was primarily aimed at Block Ciphers
based on Substitution-Permutation-Networks but it has also been successfully
adapted to work against Feistel based cipher into what is a called a Saturation Attack
[67]. Unlike differential cryptanalysis which focuses on the difference between
input/output pairs of values, this attack focuses on the relationship between
input/output sums of values. It has the characteristic to apply to some ciphers which
are not vulnerable to differential cryptanalysis. This attack can also be combined
with the previous Interpolation attack.

4.9.2 Algebraic Cryptanalysis

This class of attack, which is getting an increasing level of attention, takes a targeted
block cipher and represent it as a set of polynomial equations. It has the advantage
of requiring less plaintext-ciphertext pairs than conventional block cipher
cryptanalysis. A more in-depth look at this technique and emerging variants is
discussed in C. Cid and R. Weinmann paper [68]. The techniques mentioned below
are examples of algebraic cryptanalysis.

4.9.3 Interpolation Attack

First presented in 1997 by T. Jakobsen and L. Knudsen [69], this attack is based on
the Lagrange interpolation formula™ and uses simple algebraic functions as S-Boxes
to construct polynomials with pairs of plaintexts and ciphertexts. Labelled by some
as being very academic in nature this attack tends to be discarded maybe too
quickly.

4.9.4 XSL Attack

This controversial Algebraic cryptanalysis attack was first published in 2002 by N.
Courtois and J. Pieprzyk [70] claiming to have the potential to break AES. This seems
to have been an over statement as explained in 2005 by C. Cid and G. Leurent [71].
However, it did put the spotlight on this type of cryptanalysis and still generates
some related research on this technique.

The main concept is to derive, from the cipher being attacked, large systems of
guadratic polynomial equations which can be solved using a method called Extended
Sparse Linearization (XSL).

 The author also suggests using the Newton Interpolation formula instead to speed up the attack.

39

4.9.5 Algebraic IV Differential Attack or the Cube Attack

Even more controversial, this attack on symmetric-key cipher applies to both block
and stream ciphers but appears not to be as practical as maybe first claimed.

A. Shamir and I. Dinur published a paper in 2008 describing an attack called the Cube
Attack [72] and claiming it could break previously unbreakable block and stream
ciphers alike even if the inner working of the targeted cipher is not known. The idea
is that a cipher is vulnerable if an output bit can be represented by a polynomial of
relatively low degree over a finite field** of secret and public variables, in other
words, key and input bits.

The controversy started when M. Vielhaber complained the Cube attack was in fact a
plagiarism of his own paper entitled Algebraic IV Differential Attack (AIDA) [73] and
published earlier. At the Eurocrypt 2009 conference I. Dinur attempted to defend
their paper by saying this was a generalisation and improvement over AIDA.
Although M. Vielhaber still disagrees it seems to have divided some members of the
cryptanalysis community as some key differences are apparent as well as strong
similitudes. Finally, D. Bernstein also claims the cube attack is in fact based on the
work of X. Lai [74].

* Finite Field: Also referred to as a Galois Field and in the cube attack is noted as GF(2).

40

5. Applied Cryptanalysis to known algorithms

5.1 Introduction

We will now discuss how this theory can be applied in practise and what are the
implications in the real world. This chapter will be focusing on four specific attacks
on high profile cipher implementations, it is divided in two parts with a common
structure: a background of the cipher implementation, the type of attack used, an
overview of this attack and finally the implications of that attack. Each part will focus
on a stream and a block cipher.

The first part deals on old implementation and successful attacks of RC4 and DES
which have often been very well documented. The second part takes a more in-
depth look at current attacks on Bluetooth and AES; although those attacks are not
yet practical, they are improving each year (or month as recently seen with AES!)
and we extrapolate the possible implication of a successful attack.

5.2 Past Attacks
5.2.1 Stream Cipher - An attack on WEP

Background
Wired Equivalent Privacy (WEP) was designed to protect wireless network

communications with a similar level of confidentiality found on wired networks. It is
based on an implementation of RC4 which was originally created by Ron Rivest in
1987 but kept secret until 1994. It was subsequently implemented with serious
security flaws in WEP by the IEEE standards group in 1997 [75]. As early as 2001
various successful attacks were discovered, details of RC4 and all those related
attacks can be found in M. Stamp and R. Low’s book on cryptanalysis [76].

Type of Attacks

Some attacks are possible on the WEP integrity checks (CRC) to modify valid
encrypted traffic without knowing the key; we will however focus on the higher
profile attacks used to recover the keys: statistical, plaintext, related key and
correlation attacks.

Attacks Overview

One of the possible attacks is a statistical attack. The WEP Protocol combines an
Initialisation Vector (IV) to the RC4 initial key in order to avoid repetition while
encrypting a communication. This is an attempt to create something similar to a one
time pad but instead provides a way of attacking its security by taking advantage of
the 24 bits size of the IV and the fact it is sent in plaintext over the network. Indeed,
24 bits is not long enough to avoid repetition on a busy wireless network and if we
intercept enough IVs and their related ciphertexts we can start building statistics
when repetitions occur and attack the keystream.

If we are able to force a known plaintext to be sent encrypted and intercept the
corresponding ciphertext and IV we are then able to decrypt any ciphertexts
encrypted using that IV. This can be achieved by initiating a known network

41

communication with a person on that targeted network for which we know the
content, for example, an instant messaging conversation, an email, a web page being
accessed, etc.

A more effective attack is a related key attack which was first described by A. Shamir
et al. in 2001 [77] and is often referred as the FMS attack. They identified a weakness
in how the IV was used to initialise the RC4 keystream, regardless of where the IV
was appended (before or after the key). The main idea is to use the fact the initial
plaintext bytes encrypted in every packets are predictable (protocol headers, etc)
and because the IV is sent in plaintext, the first 3 bytes of the keystream are also
known; this information can then be used to recover part of the key. A full key
recovery with this technique requires between 4 to 6 millions packets to be
intercepted for a success probability superior to 50%.

Finally, some correlation attacks are possible. A flaw exists in the RC4 Pseudo
Random Generator used where the first byte generated is not really random and
some correlation exists between its output bytes, in such a way that 2°° of those
bytes act as a distinguisher from a true random sequence [78]. Knowing this and by
assuming the first byte of the IV is the first byte of the key being attacked, the key
can be retrieved by monitoring the communication until that assumption becomes
true. A more recent and practical correlation attack was described by A. Klein [79]
where a combination of correlations between the key and the different internal
states used to generate the keystream with statistical analysis techniques are used
to reduce the number of ciphertexts/IV to be captured for a successful attack. One
of the latest attack to date is based on A. Klein’s work and was presented by E. Tews
et al. in 2007 [80] by providing a tool called Aircrack-ptw [81] to break WPE keys
under a minute.

Implications
Successful attacks on this protocol had very early implications; the first one was for

the IEEE standard group to urgently come up with a new standard in 1999 called
WPA"™ and another improved version using AES called WPA2, in 2004. This meant for
many users a change of hardware or at the very least a firmware upgrade of their
existing vulnerable wireless kit.

However, even in 2009, WEP is still commonly used mostly for wrong assumptions of
the need for backward compatibility with old hardware. More worryingly, this is the
case for many major corporations with sometimes devastating consequences as
seen in the recent T. J. Maxx incident [82] where the credit/debit card details of 45
millions of their customers were stolen. Although no official explanation was given,
many security experts believe they were the victim of a successful “wardriving*®”
attack on their weak wireless security protocol in use, namely, WEP.

 wpA using the Temporal Key Integrity Protocol (TKIP) can now also be attacked.
1 Wardriving refers to a type of attack where the attacker sits in his car sometimes miles away from the victim and uses a
laptop with freely available tools, such as the one referenced in this section, to break WEP and gain access to the network.

42

5.2.2 Block Cipher - An attack on LM Hashes

Background
LAN Manager Hash was designed by Microsoft as one of the formats they use to

store passwords on their Windows Operating System. It works by converting a 14
characters or less user password with only letters and digits to uppercase, if required
it can be null-padded to 14 bytes. It is then split into two 56 bits chunks which are
used to create two DES keys. Those DES keys will be used to encrypt always the same
know plaintext “KGS!@#5%” which is 8 bytes long. The two resulting ciphertexts, 64
bits each, will then be concatenated to create a 16 bytes hash against the user ID. A
correct password for that User ID will be able to reproduce the corresponding hash
of the known plaintext string.

Type of Attack
This design is vulnerable to Rainbow tables and was actually used by P. Oechslin in

2003 as an example on how to use rainbow tables when he presented his concept.

Attack Overview

The following numbers have been taken from the example given in C. Swenson’s
book [83]

Because the user is forced to only use letters and digits which are then converted
into uppercase it reduces the possible initial password characters to 36.
Furthermore, encrypting the same 8 byte long plaintext means we have a total of 36’
ciphertexts that can be generated for that plaintext. If we were to generate all
possible ciphertexts to conduct some kind of dictionary attack, apart from the fact it
would take a very long time, we would require about 583 Gb of storage making this
attack difficult to implement. A more practical way is to use a Rainbow Table attack
with five tables, each with 35,000,000 lines and 4,666 columns taking a maximum of
1.4 Gb of memory and considerably less time to calculate. With such tables and
using a software such as Ophcrack [84], it is possible to crack an LM Hash in a few
seconds. The details of the attack are available in P. Oechslin’s paper discussed in
section 4.4.3

Implications
Passwords stored as LM Hash can be broken by anyone who gets hold of them thus

defeating the purpose of encryption. Microsoft introduced replacements for LM
Hash in the form of NTLMv1, NTLMv2 and Kerberos. However, LM Hash is still used
today for backward compatibility reasons and by many large corporations. This
implies an added security risk for such companies until they disable this default
windows password storage setting.

43

5.3 Emerging Attacks
5.3.1 Stream Cipher - An attack on Bluetooth

Background
Bluetooth [85] is a wireless protocol created in 1998 and currently used for short

distance communication in laptops, mobile phones, etc. Its security architecture is
based on a key agreement protocol where a pairing between two devices can occur.
A number of keys need to be generated, first an initialisation key will be created
from a PIN and a random number. It will be used to create a link key that acts as a
temporary key between the two devices to conduct an authentication using an
algorithm called E;. An encryption key will be generated, shared by both devices and
used onwards to encrypt communication with the Eq algorithm.

Type of Attack
Although attacks have been proposed against the pairing phase of the protocol, we

will focus on attacks attempted on the stream encryption cipher, Eq. There are two
types of attacks in theory possible, algebraic attack and correlation attack.

Attack Overview

Although E; is infamous for a number of vulnerabilities, most of the known attacks
on that cipher do not apply to Bluetooth due to how it was implemented and mainly
because the keystream of 2745 bits used in this implementation is too small to be
attacked efficiently. However, progress is being made and a practical attack may
even already be available against that specific implementation of Eo.

A promising type of attack is an algebraic attack described by N. Courtois and W.
Meier in 2003 [86] and which was summarized by D. Singelée and B. Preneel in 2006
[87] by saying Eq was “vulnerable to algebraic attacks because of the possibility to
recover the initial value by solving a system of non-linear equations of degree 4 over
the finite field GF(2). This system can be transformed by linearization into a system
of linear independent equations with at most 223 unknowns”. This is however not
practical because Bluetooth uses small packets for its communication and the attack
would require a long key stream.

Another type of attack is a correlation attack which was first described in 2002 by J.
Golic'” et al. [88] and claims to be able to recover the 128 bit encryption key with a
complexity of about 27° but requires too many packets to intercept to be practical.

In 2005 however, a conditional correlation attack was proposed as practical [89], this
type of attack allows for correlations to be found between input and output bits on a
stream cipher using nonlinear functions. With a known plaintext attack it was
deemed practical, but since that announcement, very little has been done to prove
them right, or wrong for that matter.

' Although the paper’s title starts with “A Linear Cryptanalysis of Bluetooth” it describes a correlation attack.

44

Implications
As mobile technology is now almost everywhere, so is Bluetooth. If a practical attack

was to be widely available then its implication may be relevant to many people. This
is especially true for mobile phones where Bluetooth is used to connect the device
with headsets, computers, etc. Breaking the pairing protocol would make it possible
for someone to hijack a victim phone and either to steal its content or use its
connection. Breaking the encryption protocol would not only allow that but also
eavesdropping of communication.

At a time where mobile phones are becoming more and more intelligent and
versatile this could become a major issue in the future. Especially when services like
wireless payment are being considered by banks such as Barclays [90]. The
importance of Bluetooth security is being recognised and NIST recently provided a
security guide to that effect [91].

5.3.2 Block Cipher - An Attack on AES

Background
The Advance Encryption Standard (AES) was published by NIST as a replacement for

DES in late 2001. It followed a 5 year process where public submissions were
considered and a cipher named Rijndael was finally selected [92]. The standard lists
three implementations of the cipher, AES-128, AES-192 and AES-256. All three use a
128 bits block but with a key size related to their names. It is the first time a public
algorithm has been approved for the protection of TOP SECRET classified document
by the NSA and has become widely popular.

Type of Attack
No practical attacks against this cipher are known to date, but an increasing number

of them are now getting close to become practical. Recent attempts using related
key boomerang attack techniques have received a lot attention.

Attack Overview

At the very end of May 2009, a paper was published by A. Biryukov and D.
Khovratovich [93] describing a potential attack on AES based on a related key
boomerang attack as mentioned in section 4.8.7. Although not currently practical to
break AES it was the first attack to be more efficient than pure brute force by
lowering the AES-256 complexity from 2%°° t0 2'*? and AES-192 complexity from 2
to 2'7®. Because there is no known attacks on AES-128 to lower its 2'*® complexity,
AES-256 has become theoretically the weaker implementation of AES. They
enhanced their attack by using boomerang switching techniques and a fairly new
concept for block ciphers of finding local collisions to find their boomerang
differentials, which is a technique derived from the cryptanalysis of hash functions.

192

Shortly after this paper was published another major breakthrough in the
cryptanalysis of AES was made public in August 2009 [94] by an extended team
responsible for the first paper; and this time it is almost practical against some
variants of AES-256. Respectively using a 9 round and 10 round variants they
lowered the complexity to 2* and 2*°. As pointed out by B. Schneier, the standard
implementation of AES-256 uses 14 variants and this type of attack requires access

45

to “plaintexts encrypted with multiple keys that are related in a specific way”, hence
for this attack to succeed specific conditions have to be met and are not yet cause of
concern for most implementation of the cipher. Nonetheless, this is the closest AES
has come to be broken yet and some cryptographer and security specialist are now
advising for the use of AES-128 instead of AES-256.

Implications

As opposed to differential cryptanalysis where we suggested the NSA knew about it
long before the public, it has been suggested this related key boomerang attack may
not have been known to NSA as it is chipping away its recommended block cipher’s
security. If all AES implementations were to be practically broken, the implications
would be tremendous as it has now been used in a very wide range of protocols and
applications, such as WPA, banking related applications, password storage, etc. and
it could impact their security integrity or confidentiality. Although we are yet far
from the need of a new standard, the previous process that selected AES also
provided the world with 2 other finalist ciphers deemed as very secure and, if
required, the search for a replacement may not take as long as it did for DES.

Finally, It is interesting to notice to speed at which those attacks are being published,
it may be an indication of a more public awareness on cryptanalysis activities as well
as a larger number of researchers working in that field.

46

6. BUGS Cipher

6.1 Introduction

This cipher, BUGS, started as my personal project in 1995 and a first version was
published in 1996 while studying at a French computer school in Lyon [95]. Pressure
from the French Domestic Secret service, the DST, forced me to remove my
algorithm from the public domain.

Crossing the channel for my studies allowed me to resume work on it as part of my
UK Final Year BSc project at Teesside University [96]. | finished its first major
redesign in 1997.

By 1999, the cipher started to attract quite a lot of attention by being featured in
some magazines and an IEEE newsletter [97]. One person especially, spent a lot of
times trying to break the algorithm. That person, who | will just name “Simon”,
introduced himself as a bored teenager and over a few months showed a very high
level of understanding of the algorithm itself, highlighting a number of weaknesses
and translating most of the algorithm in pure assembler for efficiency and test
purposes. | was responding to each weakness highlighted by the unusually
technically talented and politically opinionated teenager, by spending days and night
working for an improved algorithm design. This resulted in 10 intense months of
work and the latest version of the algorithm (v4.x); as well as the end of the
communication with my “muse” who suddenly had personal problems and could no
longer spend time on my algorithm.

As much as | would like this “Simon” to be more than just a talented teenager, this is
more than unlikely and just an interesting anecdote.

No known cryptanalysis has been done on this version of the cipher. Its creation was
based on logic, not mathematics and by an amateur who had just finished reading
Bruce Schneider’s Applied Cryptography book [98]. Finally, | have never done any
cryptanalysis of any cipher or known about the techniques | have described in the
previous chapters before writing this thesis.

6.2 BUGS Cipher’s Concept

The BUGS Cipher has two main cryptographic primitives, a Key Scheduler and a
symmetric-key encryption function.

It uses an Initialisation Vector (IV) to dynamically change the behaviour of both
primitives. It is a highly configurable cipher where the user can decides different
default settings which can also be set to dynamically change. For example, the
number of round is set to two by default, but it is possible to specify a different value
on execution, i.e. R=5. We can also allow or not the algorithm to dynamically change
that base value depending of the IV.

47

The key scheduler is designed to extend or stretch the key. In the symmetric-key
encryption function, it is used to generate key buffers in an attempt to diffuse
repetition.

The symmetric-key encryption function has two sub-functions, only referred from
then on as encryption functions; they can be used independently or combined one
after the other. The first of those encryption functions is similar to a block cipher
used in a stream cipher mode while the second is similar to a chain block cipher.

The next two sections will present an overview of those different cryptography
primitives. For detailed and implementation diagrams please refer to Appendix C.

48

6.3 Key Scheduler

The Key scheduler has three Phases: Initialisation, Scrambling and Randomisation.

The initialisation phase requires an Initialisation Vector (IV) and the size N; of the
subkey the user wants to generate. The IV can either be an initial key or a random
number both of size N;such as N./2 <= N; <= N,

It starts by padding the IV if required to the size N;

It concatenates the bytes together

It generates a pseudo random number (PRN;) by combing all the IV bytes
together with a XOR

It adds a different derived PRN; to each IV bytes

It defines a number of variables:

o Operation, O (Swap or Logical Ops) = byte;
o Direction, D (Left or Right) = byte;
o Modulo size, My (Big or Small) = byte;
o Nb or Round, R (max x2 value specified by user) = byte,

This process generates the first subkey, SK;

The main part of the key scheduler is the scrambling phase. Using SKj:

It generates a session modulo, M; = byte; @ byte, % My

It generates a Shift Window, SW = byte; % M;

Depending of the value of D, the following may start from the beginning or
the end of SK;

Between the Starting bit, i, and i + SW do an operation on those 2 bits.
The operation will depend of the value of O and can be a bit swapping or a
choice of 5 logical operations

Change the value of the modulo My from small to big and vice versa.
Change the value of the operation O from a swap to a logical op and vice
versa.

Change the direction D from left to right and vice versa

Repeat for R number of round

This process generates the second subkey, SK,

The last part of the key scheduler is the randomisation phase. Using SKj:

It Generates a Random key, RND, either using the system random generator
or the ISAAC algorithm [99].

Using byte; to select the index i, then byte; = byte; ® RND

It uses a Linear Feedback Shift Register on RND to generate a new RND value
XOR than new RND value to another byte

Repeat the previous two points until all bytes have been “randomized”

The result is the key scheduler’s output, the encryption Key Ke

49

6.4 Symmetric-Key encryption function

It consists of an Initialisation phase and two Encryption functions: Seeding and
Shuffling. It can operate in different modes where the encryption process uses one
or both of the encryption functions. If using both, then the seeding phase is done
first and the resulting seeded ciphertext is used as an input into the shuffling phase.

The Initialisation phase consists of the following:

It breaks the plaintext into blocks of size defined by the user. The block size
can be as large as the plaintext itself of a multiple of the key size used for the
encryption.

An IV is used to define the key buffer size, S (with a minimum of 16)

A random number, RN, is generated for the encryption, XORed with a key
and inserted in a pseudo random position into the final cipher text.

The Seeding phase is similar to a Block cipher used in a Stream cipher mode where a
keystream is applied to the plaintext blocks in a pseudo random sequence.

It uses the Key Scheduler to generate $ number of encryption keys, Ke;, and
stores the keys into a Key Buffer table, KT

It pseudo randomly chooses two encryption keys from KT and by XORing
them it generates a new encryption key, Keseeq, Which is then XORed with a
pseudo randomly chosen plaintext block, then labelled as “seeded”.

Keseeq is then used as an IV into the key scheduler to generate a new Ke; and
replace one of the two encryption key used above into KT

The process is repeated until all the plaintext blocks have been encrypted
with a XOR, the result is a Seeded Cipher text, sC.

The Shuffling phase is similar to a Chain Block Cipher as described below.

It pseudo randomly chooses two plaintext block and by XORing them it
generates a new encryption key, Kesnufe, Which is then XORed with another
pseudo randomly chosen plaintext block. That latest plaintext block is
labelled as “shuffled”.
That process is then repeated with:
o One of the plaintext blocks used to create Kespuge is selected as the
next block to be encrypted
o Once a plaintext block has been shuffled it cannot be used to
generate a new Kespygfre
o And until all the plaintext blocks have been encrypted but two.
Two blocks must remain “unshuffled” to be able for the recipient to reverse
the encryption process. They will therefore simply be XORED with a key of
the form Keseeq as defined previously.
The result is a Cipher shuffled text, Cs.

50

7. BUGS Cryptanalysis

7.1 Introduction

The first step is to attempt to normalise the representation of the cipher algorithm
to help confirm what type of cipher it is, its potential design flaws and identify what
cryptanalysis attacks may apply. Because it is a complex cipher which is not using
cryptography primitives in a standard way, we will attempt to describe that
algorithm using standard cryptography nomenclature; in essence mapping the
different part of the cipher to known cryptography primitives or their closest
relatives. We will then be able to identify relevant attacks and will start discussing
their possible implementation.

Its key size is configurable to be as large as an integer can be. However a too large
key size would not be practical neither for the user or the cryptanalyst. We will
therefore only consider the default key size of 128 bits, and a pure brute force attack
would then have a complexity of 2'?® on its default mode of operation.

Also, in this attack we will not focus on the padding and will assume the original key
and Initialisation Vector used in the key scheduler has the same size as the output
key and does not require any padding.

It is important to note that all of the attacks mentioned in this section are only
proposed attacks, they are not proven to work and may have errors. However, they
illustrate the thought process followed during the cryptanalysis of this cipher.

Also, in order to gather statistical data, a series of scripts were designed with the
help of T. Martinez [100] for this thesis and are available in Appendix A.

From the description of the cipher given in the previous sections it appears to be a
combination of block cipher, stream cipher and chain block cipher. We will now
focus on the normalisation of the two main components of the cipher algorithm, the
key scheduler and the encryption function.

51

7.2 Key Scheduler Normalisation

The Key scheduler normalised below appears to use two Linear Feedback Shift

Register functions (LFSR) one after the other and as such could be summarized as a

standard LFSR key scheduler albeit a rather complex one.

Initialization Vector (1V)

Initialization Phase
-> functions: Padding, concatenation, PRN
-> Settings: Round, Modulo, Direction, Operation

Subkey 1

Scrambling Phase
Subkey 1
Lol [[[Tl [[[]
Start Start bit
Bit +
Shift Window % MS
= Direction g
Randomization Phase
RND Number
r R TP
: T i @ Subkey 2
L= '
e | [[T T [[T T []
(Start Byte position may vary)

v

Figure 11 - BUGS Key Scheduler

52

7.3 Encryption function Normalisation

The key scheduler used can be represented as an SBOX in Linear Feedback mode
(LFS-Box) as illustrated in Figure 12 below.

IV and Key
I: LFS-Box

v

Figure 12. Linear Feedback S-BOX

The seeding function will use the LFS-Box as described in Figure 13. Where a 16 key
buffer is generated and one of those key subsequently replaced one at a time.

IV and Key
x16 LFS-Box LFs-Box |...... — 5] LFs-Box L |FS-Box

; D ED D

Ke Ke.
Figure 13. Linear Feedback S-BOX used in the Seeding function

In its default mode, the BUGS cipher uses the seeding and shuffling functions. An
attempt to normalise the full cipher operation is illustrated in Figure 14, where the
pseudo random selection of the Plaintext block being XORed during the seeding
phase has been represented by a Permutation Network. That Permutation network
could only be represented as a P-BOX as it dynamically changes with the IV. The
shuffling phase uses a modified version of the key scheduler, LFS-BOX, to generate
the final ciphertext represented as the Seeded Cipher Shuffled Text with each
ciphertext block is labelled sCs

4 Plaintext
D T Co
|
< o P
D b L 9 D
X) () 0 (e) (X)
on sC, L
\ o il Seeded Ciphertext
e o) C%) e CCua) (%)
V] | L | [
&® P-Box
Shuffling IV\ | | L | |
< Prase —(Cc)+~(S®C D LFS-Box
v W
Seeded Ciphertext Shuffled
_ (sCs1) (sCs2)(sci(st) _____ (sCs_) (sCsn)

Figure 14. BUGS Encryption Function in default mode

53

7.4 Attacks Selection

Attempting to normalise the algorithm allows us to view it in a more global and
simpler way compare to the first specifications given and the diagrams available in
Appendix C. Because the algorithm is complex and combine different type of ciphers’
characteristics, some simplifications had to be made; such as the introduction of the
P-BOX and the LFS-BOX, thus the details of those operations are not shown in the
previous diagram.

However, it makes it easier to map certain type of attacks that may be successful on
that algorithm, especially when considering Linear Cryptanalysis.

Two targets can be considered for our attacks, the key scheduler alone®® or the
encryption functions. Each of those targets has two areas of cryptanalysis that apply:
- Algorithm conception cryptanalysis
o Algorithm review to identify conceptual flaws
o Diffusion and confusion analysis of the ciphertext to identify obvious
potential weaknesses
- Known cryptanalysis attacks
o Specific type of cryptanalysis attacks adapted for this cipher

For this thesis we will focus on the encryption functions as a target and the following
attacks will be discussed:
- AStatistical analysis of the cipher to identify the Diffusion and Confusion
characteristics of the ciphertexts and if there are any inherent weaknesses.
- Because of the XOR properties, it is likely a known plaintext attack on the
shuffling function would work.
- A Chosen plaintext attack on the same function should also work for the
same reasons and could be used to speed up the attack.
- How to build a Linear Cryptanalysis framework for this cipher.

*® The software package created with the BUGS algorithm uses the key scheduler alone for its password application.

54

7.5 Statistical and Probabilistic attack

For this attack, two tests were conducted to analyse the ciphertext bits confusion
and diffusion properties. Both tests used the secret key “angleterre” to encrypt the
same plaintext, the BUGS cipher package’s History file of 24 Kb, using the default
cipher’s mode of operation. This meant both encryption functions were used, the
seeding and shuffling functions.

7.5.1 Confusion Analysis

A script was designed to take a ciphertext input and generate the following:

- To count the number of times the same hexadecimal value was found.

- To count the average distance between repetitions.
Two tests were conducted on the same ciphertext, the first one to search for
hexadecimal values repetitions with an alignment on every byte and the second test
with an alignment on every bit. A summary of those results is displayed in the Table
6 where the top 10 most frequent values are highlighted in pink and the lower 10 in
blue. The full results are available in Appendix B.

Value 1 byte Average Value 1 bit Average

Alignment Distance Alignment Distance
FF 194 976.78 FF 1332 141.85
DF 159 1200.36 7F 1157 163.47
EF 156 1207.51 FE 1157 163.47
FE 150 1269.17 DF 1120 168.75
FB 148 1279.27 EF 1113 169.68
BF 146 1293.73 F7 1101 171.71
F7 146 1302.88 FD 1099 171.89
F4 145 1296.55 BF 1091 173.38
CF 143 1336.80 FB 1088 173.78
DE 142 1301.35 F3 973 194.61
65 55 3094.8 2 599 316.87
66 55 3454.4 4 598 316.79
26 54 3533.34 81 597 316.85
64 51 3713.88 40 597 317.06
54 51 3719.64 9 594 318.67
44 50 3817.12 29 593 320.13
68 49 3914 90 590 321.39
35 48 3825.38 20 587 322.46
61 48 3898.91 52 583 325.00
6A 45 4242.27 4A 580 327.64

Table 6. BUGS - Hexadecimal repetitions
The results of the first test show a high repetition for the value FF, which could be an

indication of a cipher characteristic, in which case it may be possible by analysing the
repetition pattern of large number of plaintexts to derive information from the key

55

used. The second test results are interesting, although FF is still the most found value
many other values also have a high repetition count. This may indicate that the first
results were actually not a sign of bad confusion. The average distance results did
not highlight any characteristics for any values.

A further test was conducted this time with the same plaintext encrypted with a
different cipher, using the standard mode of operation of GPG [101], and with a byte
alignment. The results displayed in Table 7 show what looks like a much better
confusion.

Values 1 byte Alignment Average Distance
44 59 153.37
36 52 180.96
Fe 52 180.80
fc 49 192.45
do 49 192.41
%e 49 186.22
aa 49 185.04
67 48 184.63
31 47 190.08
64 47 195.30
19 27 323.80
ad 27 317.46
a2 26 366.36
9a 26 342.12
23 25 386.37
a5 23 350.31
fb 23 397.40
c0 22 362.33
d8 21 448.35
d3 19 456.33

Table 7. PGP - Hexadecimal repetitions

Finally, to confirm or not the FF value characteristic on the BUGS cipher, further tests
would be required. For example, different keys with specific values could also be
used such as:

- Akey with all the bits sets to 1

- Akey with all the bits sets to 0

- A key with half the bits sets to 1 and the other half to 0

56

7.5.2 Diffusion Analysis

Another script was designed to display a file as a picture with the following rule: to
read the file as a bit stream and each time a 1 was found then a black pixel would be
marked on the picture and for a value of 0 a white pixel will be used. With a
parameter to add a new line in the picture every 512 bits, the following files were
created as a graphical representation of:

- The plaintext as shown in Figure 15. A pattern is apparent, which is to be
expected as this is a text file which only uses a certain set of ASCII character
and as such has a repeated set of bits.

- The ciphertext as shown in Figure 16. Where no pattern is apparent. For
comparison an image was also created from a random stream of bits
(/dev/random) and the picture result was similar.

- Adifference between the plaintext and ciphertext as shown in Figure 17. The
white pixels indicate the different pixels between the two files. No pattern is
apparent either. A bad results would have been if parts of the picture were
either all the same or all different.

- The GPG ciphertext generated for the previous test was reused in Figure 18.
It shows a similar level of diffusion as BUGS. Because it produces a smaller
ciphertext the picture appears smaller.

Although no pattern is an indication of a good diffusion for the cipher it does not

prove it is secure. It just proves it is not apparently vulnerable to a bad diffusion
attack.

57

au%ﬁxﬁ.n \&.E.Z...
NS cvuﬂuﬂ.u..a..i: ...:.Q! :

v uncN.....f ..;ﬂﬂ».ﬂaﬂ

pi n“,rzawxd.»xﬂ,wﬁnlunﬁw»ﬁ :

tion

e 3 .ﬂﬂﬂ.&iﬁﬁdﬂq%
i ..dﬂudmﬂ;hx_ong..l.rs. .

.w».&.dn

,.".4”»..9.! iR ma M, 3
e..l.ﬁi g.r§§

Ciheftext rahical epresenttio

ihtext Diffusion Répreseﬁta

Pla

oa.rm.»lguunnfs‘n.

G : A e Y :
: an.-s.n Qlﬁ“ﬂu.&u\ﬁ bTS AN s RO
TG P '3

Figure 16. BUGS

Figure 15.

58

59

7.6 Known plaintext attack

If we are using the Shuffling function alone, then a known plaintext/ciphertext attack
is possible.

This is because the cipher combines two plaintext blocks to encrypt another. By
intercepting a ciphertext if we XOR the corresponding plaintext we are left with the
combined plaintext blocks or XOR-sums, in other words, all the Kespyge used.

We also recover the last two keys (sCi and sC;) used to encrypt the last two blocks of
plaintext left unshuffled but we don’t know which two blocks represent those two
keys. Knowing all the values of the Kesnuse is useful, because we can now attempt to
combine in pairs all the original plaintext blocks until we find a matching Kesnyge.
Once we find a match we would have recovered which blocks were used to create
that specific Kesnuge.Doing this for all the keys allows us to reconstruct the sequence
used during the encryption process to generate all the Kesyg, because this
sequence is dependant of the IV we would gather information to help us derive the
original IV.

However we would need to take false positives into consideration as two different
pairs of plaintext block could generate the same value. Also, because two of the
“combined blocks” are in fact the keys sC; and sCj, there should be no plaintext block
pairs with those values; but it can happens and if it does it would add to the false
positives .

7.7 Chosen plaintext attack with restricted input elements

This is an extension of the previous attack by choosing the plaintext to be encrypted.
The idea is to find a way to populate the plaintext with specific values for which it
would be easy to extract which individual plaintext blocks were used to created all
the Keshufﬂe

A solution would be to have values producing unique paired XOR-sums but this is
generally not the case as shown below where two different pairs produce the same
XOR-sums:

10110 @ 10000 = 00110

00100 @ 00010 = 00110

To solve our problem, we can restrict plaintext values to be power of twos. This
implies that only values whose representation in base 2 is of the form shown below
are allowed:

So={1, 10, 100, 1000, ...etc}

If we XOR two of values from our new set S then we have for example:

1000 @ 100 = 1100

And only 1000 and 100 could have been the values to have a XOR-sum of 1100

We will call this property a XOR-sum uniqueness property from now on

This allows us to reconstruct the full XOR sequence used during the encryption
process in a very fast time. As before, because this sequence is dependant of the key
used to encrypt the plaintext we would gather information that could be used to
recover the key.

60

It is interesting to note that our very simple rule, used to create the Sq set mentioned
above, is also very restrictive in the number of unique values that can populate Sq for
a given bit length. Therefore, the size of the chosen plaintexts will also be governed
by the limitation in the number of unique values available for a given plaintext block
size. If the attack cipher uses 128 bits plaintext block, then the maximum number of
unique values we can generate is 128. This means the maximum size our chosen
plaintext could have in this context is: 128 bits * 128 = 2Kb

This has no impact on our ability to reconstruct the full XOR encryption sequence but
if more statistics were required to recover the key then it may impact the
performance of this attack.

However, while researching this problem it seems there might be different sets
which could keep the same properties we are looking for, a XOR-sum uniqueness on
two elements of S, but with a larger element population. Indeed, the following
elements are of 8 bits size and have that XOR-sum uniqueness property:

S;={ 1, 10, 100, 1000, 1111, 10000, 100000, 110011, 1000000, 1010101, 1101010,
10000000, 10010110, 10101011, 11011011, 11101101, 11110111, ...}

What is interesting to note is that there are more than 8 elements in this set. These
numbers were filtered out by designing a rudimentary computer program designed
to brute force all possible set of 8 bits values yielding the XOR-sum uniqueness
property. To our knowledge, there is currently no known method to optimally
compute those numbers other than using a near optimal “Greedy” algorithm
mathematical function [102]. Finding such optimal method to generalize that
property is not in scope for this thesis.

Further extension of this technique could yield an even more interesting concept as
described in the next attack.

7.8 Unrestricted XOR-Sum Uniqueness Cryptanalysis attack

It is important to note at this point, this is only a theoretical attack which may not be
practical.

Building from the previous attack, if the plaintext was not chosen but had been
created using elements from S¢={10,100,1000,...} then it would still be possible to
attack the corresponding ciphertext without choosing or knowing the plaintext
because our XOR-sum uniqueness property still holds true for any number of XOR
operations on elements of Sq

For example, if our plaintext is: P={10,100,1000} and the ciphertext is C={1110} we
can reconstruct the XOR sequence as follow:

10 ® 100 ® 1000 = 1110

As only 10, 100, 1000 could have produced that XOR. This means we do not have to
first XOR the plaintext out of the ciphertext to conduct our attack and in this specific
case we do not need to know the plaintext.

This attack is obviously not practical because it is more than unlikely anyone would
use this type of elements to produce plaintexts. However, the really interesting
aspect of this concept, is to extend it one last step further.

61

For a practical attack we would need the XOR-sum uniqueness property discussed
earlier to also hold true for a set of values created without any restrictions.

However this is not the case, if we XOR two elements from such a set the XOR-sum
will not be unique.

Taking into consideration what we have learnt when discussing the different modern
cryptanalysis techniques, one attack was created to resolve the following problem:
How to define linear equations from a non linear cipher?

The solution, through Linear Cryptanalysis (LC), was to define linear approximations
of the cipher and use probabilities and statistics to attack it.

It may be possible to use the same logic to resolve the following problem:

How to define XOR-sum uniqueness properties on an unrestricted set of elements?
A possible solution would be to define XOR-sum uniqueness “approximations” of the
cipher combined with a similar LC technique of using probabilities and statistics to
attack it.

By “approximations” we mean the following:

Let E() be an encryption function which takes two plaintext blocks, calculate a XOR-
sum and use it to encrypt another plaintext block.

For P={P,, P4, P} ={11110000, 11111111, 10101010}

Then Co= E(Py ® (P; @ P3)) =11110000 @ 01010101 = 10100101

The approximation would single out bits on the plaintext and ciphertext so the XOR-
sum uniqueness property holds true, in our example a possible approximation would
be:

From P={11110000, 11111111, 10101010} and Co= 10100101

Then single out the bits highlighted in Red and consider the following approximation:
P={00100000, 00000100, 10000000} and Cp= 10100100

This new set has the XOR-sum uniqueness property we are looking for and is related
to the original plaintext and corresponding ciphertext on the bits highlighted in Red.

Therefore, as stated before, using a similar logic as the one used in LC we could
calculate the probabilities for this type of approximation holding true, produce some
statistics using large number of plaintext/ciphertext pairs encrypted with the same
secret key, try all possible subkey values and record when our approximation did
hold true. This may indicate probable correct bits values of the secret key.

This technique could be generalized and extended to attack anything being a result
of a XOR-sum, such as keys being XORed to plaintext/ciphertext blocks.

It may be possible to refine that technique by studying the probability distribution of
the possible XOR-sums. It is unfortunately out of scope for this project to investigate
that concept further and as stated at the beginning of this section, it may be a
completely unpractical attack with no chances of success. On the other hand, if this
could work, it would be called an Unrestricted XOR-sum Uniqueness Cryptanalysis
attack.

62

7.9 Linear Cryptanalysis attack

A successful conventional Linear Cryptanalysis (LC) attack gives a partial view of the
second to last subkey used to generate a ciphertext. From that subkey the original
key can be recovered with a combination of LC and brute force attack. This implies
the key scheduler is not a one way function.

The BUGS cipher uses a key scheduler which is a one way function. As such even if
we were able to recover parts of the last subkey used, or even a complete subkey for
that matter, it would still be very difficult to attack the original key.

However, there might be some weaknesses in the Key Scheduler; hence we should
still consider a LC attack on this cipher as if we could prove some of the input bits
have certain relationships with some output bits, some information could be derived
about the original key used.

It is difficult to conduct a conventional linear approximation of this cipher because of
the following reasons:
- The P-BOX and LF-SBOX settings change every time a different original key
and IV is used
- It combines three type of ciphers (Block, Chain Block and Stream Cipher)
- The permutation table occurs on block of plaintexts and ciphertexts as
opposed to bits.

The encryption function normalisation illustrated in Figure 14 was actually designed
with Linear Cryptanalysis in mind, as a result it will help us define a Linear
Cryptanalysis framework for this cipher. The idea is not to focus on bits but instead
on whole block/keys and apply a similar Linear Cryptanalysis technique, as
highlighted in the Figure 19, where we draw the following linear approximation of
the cipher in blue: P; + P, = sCs; + 5Cs; + sCspq

63

Seeding

< Phase

N/

on

o

Shuffling
Phase

.

S
L c‘ls) G

Figure 19. BUGS Cipher High-Order Linear Approximation

d

This is obviously different from conventional LC where we focus on the second to
last round subkey. With the BUGS cipher, the only such round occurs in the seeding
phase when generating the keystream. Instead we could try to identify if for the
SUM of whole plaintext block values there is a relationship with the SUM of the
corresponding cipher blocks. Calling this attack a High Order Linear Cryptanalysis®®,
its inspiration was taken from the High Order Differential Cryptanalysis technique.
Even if by itself it does not provide direct information on the key, it may provide
some relationships between the input and output bits and further research on how
this could be exploited might be interesting.

' While doing the research no mention of that type of attack could be found, hence we are assuming this is right name.

64

7.10 Findings summary

Those attacks should be considered as an introduction to the BUGS cipher
cryptanalysis as some interesting results were found which may help gather further
information on its characteristics.

The first attack results indicated that the cipher may have a characteristic of bad
confusion and further tests would be required to confirm that.

The second and third attack targeted the shuffling encryption function. Although it is
not used alone in the cipher default mode of operation, it is available as a
standalone option mode and appears to be vulnerable to known and chosen
plaintext attacks. As such, from this cryptanalysis we can recommend against using
this cipher in that optional operation mode.

The fourth attack while targeting the same encryption function attempted to use
originality to identify characteristics between a plaintext and a corresponding
ciphertext by considering a potentially new form of attack on XOR uniqueness
properties.

The last attack, using a high order linear cryptanalysis framework, suggested it may
be possible to gather some information on the keys used to generate the ciphertext,
but no obvious LC related attacks were found.

Further attacks should also be considered as they may apply to this cipher:

- Stream cipher attacks such as related key and correlation attacks.

- Differential Cryptanalysis may also be adapted for this cipher. However, with
conventional Differential Cryptanalysis, no differences in the input will always
result in no differences in the output; this will not be the case with this
Cipher as it uses a random IV for the encryption.

Finally, it is not because a cipher is complex that it means it is more secure, on the
contrary, as it is likely prone to implementation errors. That algorithm was never
designed with resistance to known cryptanalysis attacks in mind. It was purely
designed on an ad-hoc basis where thoughts of extra layer of security were added
one after the other. This shows in the complexity of its design and although it was
not fully broken during this thesis, signs of potential weaknesses were highlighted.

65

8. Conclusion

8.1 What was achieved

In this thesis | introduced the basic concepts underlying cryptanalysis and how they
were used in modern attacks. While providing a general understanding of those
attacks | focused on Linear and Differential cryptanalysis, showing how the discovery
of those techniques has paved the way to modern cryptanalysis with their variants
dominating the different research currently in progress. More importantly, |
provided a comprehensive explanation of Linear Cryptanalysis based on H. Keys
tutorial and attempted to make it as approachable as possible for the reader by
explaining the basic mathematical concept of the attack.

| then provided some context on how those attacks have been used in the past and
are used nowadays by looking at four high profile cipher implementations, two
stream ciphers and two block ciphers. | highlighted their weaknesses and ongoing
cryptanalysis research breakthrough while referencing the related techniques
introduced in this document. For each of those ciphers | also discussed the real
world implications of those past successes and extrapolated the consequences of the
emerging ones.

Finally, in the last chapter | applied what | learnt through the thesis by starting to
conduct the cryptanalysis of the latest version of my own cipher, BUGS, which to my
knowledge has never been subject to one before. | started by giving an overview of
the cipher, normalised the cipher’s description and suggested which of the attacks |
previously discussed were applicable or not, and why. | then discussed five attacks
which may help highlight some of the BUGS cipher’s characteristics. Out of those
attacks, two are practical and two are an attempt to create new attack frameworks.
This should have provided an insight on how one can start a cipher’s cryptanalysis.

8.2 Future of Cryptanalysis

As cryptography continues to underline the data security of existing and new
technologies, its impact when broken and the need for assessing that level of
security is increasing. As a result, Cryptanalysis is a science which is receiving a lot of
attention from a wide sector range: academics, the military, corporations, etc.

It was interesting to compare the information available almost 15 years ago when |
created the first version of my algorithm and now, writing this thesis. All that was
then available were specific internet forums and chat rooms with information not so
easy to reach and limited academic exchange of information. This contrasts with my
thesis research where | found hundreds of publicly available papers referencing even
more, many conferences on that topic and academics joining forces to facilitate that
exchange of information. While still not becoming a widely popular subject it is
getting more and more accessible.

Specifically, two areas of Cryptanalysis are increasingly producing some interesting, if

not yet practical, new attacks: Algebraic Cryptanalysis and some variants of
Differential Cryptanalysis. There is also an emerging tendency to combine the same

66

classes of cryptanalysis variants together to improve existing attacks. In a few cases,
as seen recently with AES, this approach has been taken one step further by
combining cryptanalysis techniques designed against different cryptography areas
such as hash algorithms and block ciphers.

It is however important to remember that as new cryptanalysis techniques are
discovered so are new ways to protect against them.

8.3 Personal learning

This has been a challenging thesis to write as there was much to learn and to
understand on what is a complex topic. While doing my research | also felt humbled
by the “genius” of those techniques’ authors and their required dedication. It also
highlighted the place this science has in our history and future. Another aspect of
cryptanalysis which is often forgotten is that it requires data to be intercepted and
this sometimes has to be done at great human costs as shown on the regularly
updated NSA National Cryptologic Memorial website [103].

Working on this thesis has been enlightening, towards the end of my research it felt
as if | was almost watching live cryptanalysis of the AES cipher, with what could be
the birth of a new wave of attacks. Each time | was researching more information on
a type of attack | could see progress being made, new papers published and the
attack being refined. Having just studied the concept of those techniques being used
helped give me a better appreciation of what was being discussed and discovered.

Finally, this work has given me both professional and personal benefits.
Professional, because working in IT Security | can now make better informed
decisions related to symmetric-key cryptography. | have for example, already seen
on security forums discussions about the new AES published attack, with the focus
being on its predicted premature death and the conventional recommendation of
using longer keys or to change algorithm altogether. What | would have failed to
appreciate before doing this thesis is that understanding the nature of that attack
means what seems to be a less secure choice of using AES-128 is in fact a safe
recommendation. It also gave me a better understanding of the inner working of
some of the tools | have been using professionally, such as Ophcrack, when | found
myself reading a paper about TMTO which was written by the author of that tool.

On a personal level, | gained a better understanding of the different cryptanalysis
techniques and especially Linear Cryptanalysis. This has given me the basis to
conduct a full cryptanalysis of my algorithm. It was extremely interesting and
motivating to attempt to break that cipher, especially when weaknesses were found.
This has inspired me to carry on in this field, at a personal or academic level, and
look at more unconventional solutions such as the possible combination of stream
and block cipher techniques which may not have been either tried or fully exploited
before. While researching this thesis | indeed noticed a lot of progress was being
made in “silos”, such as linear, differential, algebraic cryptanalysis, but less was done
to take a step back and see how those techniques may overlap.

67

9. APPENDIX A — Thesis Scripts

9.1 Frequency Analysis script
9.1.1 Information

This script takes a file as input and depending of its parameters will look for the
repetition of N hexadecimal values aligned on A bits.

The output will be a list of lines with three fields sorted on the values with the
highest repetition count:

Hexa value, repetition count, average distance between repetitions

9.1.2 Usage

Looking for the repetition of hexadecimal values (8 bits long specified with the —I

parameter) aligned on 1 byte (8 bits long specified with the —a parameter):
S ./counter.pl -1 8 -a 8 pl file_to_analyse > file_frequency.csv

Looking for the repetition of 2 hexa values (16 bits) aligned on 1 byte:
~ S ./counter.pl -1 16 -a 8 file_to_analyse > file_frequency.csv

Looking for the repetition of 1 hexa value aligned on half a byte (-a 4)

Hence, for example, on a binary file the hexa values of “BA DC FE” will be accessed

as little-endian values “AB CD EF” and the following repetitions will be reported:

“AB”, “BC”, “CD”, “DE” and “EF”. The results will however be displayed in Big-Endian

(i.e.: “BA” instead of “AB”)

~ S ./counter.pl -1 8 -a 4 file_to_analyse > file_frequency.csv

The more interesting option is to look for the repetitions of hexa values aligned on 1

bit:

~ S ./counter.pl -1 8 -a 1 file_to_analyse > file_frequency.csv

9.1.3 ‘counter.pl’ Script

#!/usr/bin/env perl
use strict;

use warnings;

use 10::File;

Alignment of blocks in the file (in bits)
my Sblock_align = 8;

Length of sequences to count (in bits)
my $seq_length = 8;

Name of the file to parse
my Sfile;

Parsing command-line arguments
for (my Si = 0; $i < @ARGV; ++Si) {
#'-a' option takes an alignment for blocks as parameter
if (SARGVI[Si] eq '-a') {
Sblock_align = SARGV[++Si];
}

#'-I' option takes a length for sequences as parameter
elsif (SARGV[Si] eq "-I') {

Sseq_length = SARGV[++Si];
}

68

#'-h' option displays some help

elsif (SARGV[Si] eq '-h') {
print "$0 [-a <length>] [-] <length>] [FILE]\n";
print "Count occurrences and repetition distance between\n";
print "<I>-bit length sequences, aligned every <a> bits in\n";
print "FILE or in standard input.\n";
print " -a <length> Fix the value <a> (sequence alignment, in bits)\n";
print " -I <length> Fix the value <I> (length of sequences in bits)\n";
print" -h Display this help and exit\n\n";
exit 0

}

elsif (SARGV[Si] =~ /-.+/) {
die "Unknown option: SARGV/[Si]";

}

Arguments which are not options are file names
else {
if (Sfile) {
die "File name given twice."
}
Sfile = SARGV[Si];
}
}

Bits will be the array of 0 and 1 filled with the contents of the file.
my @bits = ();
my Shandler;
if (15file) {
Shandler = *STDIN;
}
else {
Shandler = new 10::File $file, O_RDONLY
or die "Cannot open Sfile";
}
my Schar;
while (Shandler->read(Schar, 1) == 1) {
my Svalue = ord(Schar);
Given the 8-bit number Svalue, write it in @bits
for (my $i = 0; $i < 8; ++5i) {
if (Svalue % 2) {
push @bits, 1
}
else {
push @bits, 0
}
Svalue /= 2;
}
}

if ($file) {
Shandler->close;

}

my %table_occurrences = ();
my %table_first_occurrence = ();
my %table_last_occurrence = ();

For each aligned block
for (my Si = 0; Si < @bits - Sseq_length + 1; Si += Sblock_align) {
Compose the $seq sequence of $Sseq_length bits written in hexa.

my Sv=0;
my Scoef = 1;
my Sseq ="";

for (my $j = 0; $j < Sseq_length; ++5$j) {
Sv += Sbits[Si + $j] * Scoef;
if (Scoef == 0x80) {
Sseq .= sprintf("%.2X", Sv);
Sv=0;
Scoef = 1;

69

}

else {
Scoef *=2;
}
}
if (Scoef > 1) {
Sseq .= sprintf("%.2X", Sv);
}
Count it
++Stable_occurrences{$seq};
if (Stable_occurrences{$seq}==1) {
Stable_first_occurrence{Sseq} = $i;
}

Stable_last_occurrence{Sseq} = Si;

Print the table sorted decreasingly on values.
foreach my Skey
(sort {Stable_occurrences{Sb} <=> Stable_occurrences{$a}}
keys %table_occurrences) {
my Srepetitions;
if (Stable_occurrences{Skey} >= 2) {
Srepetitions =
(Stable_last_occurrence{Skey}
- Stable_first_occurrence{Skey} - Stable_occurrences{Skey} + 1) /
(Stable_occurrences{Skey} - 1);
}
else {
Srepetitions = "0";
}

print "Skey, Stable_occurrences{Skey}, Srepetitions\n";

70

9.2 Graphical bits representation script
9.2.1 Information

This script takes a file as input and converts its bitstream into a XPM file format
which it sends through the standard output stream. This format allows the definition
of an image into a character table which can then be used in tools such as
Imagemagick [104] to generate a picture from that table.

9.2.2 Usage

For a file in ASCII format:
~$./image.pl file_to_convert > file_converted.xpm

For afile in binary format, we use a ‘-r’ parameter:
~$./image.pl —r file_to_convert_binary > file_converted.xpm

By default the script will generate a representation for a 256 pixels wide image, it is

possible to specify a different pixel wide size, i.e.: 512, by using the -w’ parameter:
~$./image.pl -w 512 file_to_convert > file_converted.xpm

Once the .xpm file has been generated we can use Imagemagick to generate the

picture:
~$ convert file_converted.xpm file_picture.png

Another interesting command is to use Imagemagick to generate a differencial

picture between two pictures:
~$ convert plaintext.xpm ciphertext.xpm —compose difference —composite difference.png

9.2.3 ‘Image.pl’ Script

#!/usr/bin/perl
use strict;

use warnings;
use 10::File;
use integer;

my Scolumn_count = 256;
my Sfile;
my Sraw = 0;
Parsing command-line arguments
for (my Si = 0; $i < @ARGV; ++Si) {
#'-w' option takes a column count as parameter
if (SARGV[Si] eq '-w') {
Scolumn_count = SARGV[++Si];
}
#'-r' option for raw files
elsif (SARGV[Si] eq '-r') {
Sraw =1;
}
elsif (SARGV[Si] =~ /-.+/) {
die "Unknown option: SARGV/[Si]";
}
Arguments which are not options are file names
else {
if (Sfile) {
die "Twice file names"
}
Sfile = SARGVI[Si];
}
}

71

if (1Sfile) {
die "Need a file name as argument.";

}
Bits will be an array of 0 and 1
my @bits = ();

sub extract(S) {
my (Svalue) = @_;
Given the 8-bit number Svalue, write it in @bits
for (my $j=0; $j < 8; ++5j) {
if (Svalue % 2) {
push @bits, 1
}
else {
push @bits, 0
}
Svalue /= 2;
}
}

my Shandler = new |0::File Sfile, O_RDONLY
or die "Cannot open S$file";
if (Sraw) {
Raw files are read char by char
my Schar;
while (Shandler->read(Schar, 1) == 1) {
extract(ord(Schar))
}
}
else {
Raw files are read line by line
while (my Sline = <Shandler>) {
chomp Sline;
$line =~ s/\[BUGS_ASCII_MODE_v04_START\][[:digit:]]*,//g;
$line =~ s/\[BUGS_ASCII_MODE_v04_END\]//g;
for (my Si = 0; Si < length Sline; Si +=2) {
Each character is written by two hexagits
extract(hex(substr(Sline, $i, 2)));
}
}
}

Shandler->close;

Compute line_count in function of column_count and the number of
read bits. It is ceil(bit count / column count), that is to say

floor((bit count + column count - 1) / column count).

my Sline_count = (@bits + Scolumn_count - 1) / Scolumn_count;
XPM header
print "static char *file_xpm[] = {\n";
print "\"Scolumn_count Sline_count 2 1\",\n";
print "\" c #FFFFFF\",\n";
print"\". ¢ #000000\"";
my Sindex = 0;
for (my Si = 0; Si < Sline_count; ++5i) {

print " \n\"";

for (my Sj = 0; $j < Scolumn_count; ++$j) {

if (Sbits[Sindex++]) {

print ".";
}
else {
print"";
}
}
print ||\||ll;
}
print "};\n"

72

10. APPENDIX B — BUGS Cryptanalysis Results

Below are the results of the ciphertext Frequency analysis, some data highlighted in
grey were taken out for this table to only fit on two pages. The values highlighted in
pink and red are of interest.

Value |1 bitalignment | Distance Value 1 byte alignment | Distance
FF 141.85 FF 976.78
7F 1157 163.47 DF 159 1200.37
FE 1157 163.47 EF 156 1207.52
DF 1120 168.75 FE 150 1269.17
EF 1113 169.68 FB 148 1279.27
F7 1101 171.71 BF 146 1293.73
FD 1099 171.89 F7 146 1302.89
BF 1091 173.38 F4 145 1296.56
FB 1088 173.78 CF 143 1336.80
F3 973 194.61 DE 142 1301.35
E7 972 194.64 ED 142 1342.15
DD 969 194.73 BA 141 1335.91
EB 964 196.27 8D 137 1396.18
3F 962 196.80 EB 134 1391.42
B7 959 197.10 AE 133 1419.55
FC 954 198.44 98 132 1429.53
F9 948 199.74 BO 132 1438.94
CF 944 200.48 F8 132 1426.36
DB 943 200.25 93 131 1436.42
9F 943 200.70 BB 130 1454.07
6F 942 200.68 9E 130 1465.42
DE 935 202.20 F2 129 1473.69
FA 932 203.08 EC 129 1454.81
BD 932 202.47 BE 129 1455.63
F5 921 205.36 9F 128 1467.28
7D 921 205.50 9A 128 1407.57
BE 920 205.97 EE 127 1493.54
BB 918 205.62 9B 127 1486.75
ED 912 207.10 B7 125 1519.71
7E 896 211.06 B2 125 1514.81
SF 891 212.75 E6 124 1526.28
77 886 213.09 E8 123 1539.92
78 883 213.95 9C 123 1539.79
EE 874 216.69 E7 123 1549.62
AF 874 216.84 BC 122 1568.52
D7 872 217.10 AC 122 1567.00
F6 870 217.59 B6 121 1556.93
1F 861 220.05 F5 121 1566.00
BA 856 221.16 E3 121 1582.33
75 848 223.12 DA 121 1538.20

73

F8 847 223.58 AD 120 1561.96
Cc7 844 224.54 FD 119 1573.58
3E 842 225.20 F3 119 1601.78
7C 841 225.47 8F 119 1592.97
8F 841 225.31 FC 118 1574.04
6E 840 225.05 9D 118 1611.03
CE 834 226.51 DB 118 1554.01
F4 829 227.83 DD 117 1602.93
37 823 230.16 AB 117 1627.97
D5 819 230.69 ES 117 1545.76
AB 818 231.43 8B 117 1600.24
7A 818 230.82 FO 117 1609.07
Co 646 293.71 4E 2795.30
1 646 293.71 41 68 2715.18
A9 646 293.39 58 67 2649.42
44 636 297.88 24 63 2933.58
82 636 295.00 59 63 2969.84
11 634 298.04 55 62 3081.89
14 634 299.33 6C 62 3057.49
42 633 299.11 4A 62 2969.36
58 632 300.41 3C 62 3048.84
0D 632 299.09 60 62 3011.85
21 630 300.66 48 62 2985.36
1A 629 301.18 15 61 2964.87
22 628 302.19 43 60 3170.66
10 627 299.90 51 60 3114.93
2B 627 302.76 72 60 3141.37
25 615 308.76 7E 56 3361.76
12 612 306.07 73 56 3395.65
6 608 311.30 46 56 3393.76
32 605 313.92 49 55 3373.67
94 602 314.73 25 55 3351.59
2 599 316.87 65 55 3094.85
4 598 316.79 66 55 3454.41
81 597 316.85 26 54 3533.34
40 597 317.06 64 51 3713.88
9 594 318.67 54 51 3719.64
29 593 320.13 44 50 3817.12
90 590 321.39 68 49 3914.00
20 587 322.46 35 48 3825.38
52 583 325.00 61 48 3898.91
4A 580 327.64 6A 45 4242.27

74

11. APPENDIX C — BUGS Cipher Detailed Diagrams

The diagrams below are provided in order of the cipher’s workflow where anything
in red is IV/Key dependant.

11.1 Key Scheduling
11.1.1 Initialisation

H I E | |-| LIO | W | (0] | Rl |_| D Initialisation Vector (IV)
|

~——
¢ Length =L Saving IV into

72169|76|76|179|187|79|82]|76]168| | | | | |Pass_clear[]
Na Nb

Nb of Char to

Nc Nd add = NB_ADD

[Nc + Nd = POS]4
Nc = POS/ 10

y
° Nd = POS - (Na * 10)
i.e.;if POS=25then Nc=2and Nd=5

Stop

IndexB

No
Pass_clear[Na%L] % L
Pass_clear[Nb%L] % L

[New Char = Pass_clear[Indexa] & Pass_clear[Indexb]

'

[INSERT New Char in Pass_clear[POS]]

{ IndexA

——

Nb of Char

< NB_ADD ?

Na=-Na+1
Nb=Nb+ 1 %L

POS = POS +1

Stop

Figure 20. Key Padding function — test_length()

75

72169 |76|76|79|87|45|34|103|23]|12]10]|79|82]76]68

: : : Password in clear
v L
01001000
01000101 > Conversion in bits and concatenation
010.....
J

v
0100100001000101 | 010.......] ...

I
If using 16 bits integer

Figure 21. Bits concatenation function — Transcription()

76

0100100001000101 | 0100011011001101 | 0111110... | | | |

If using a 128 bits

'

P

2N

0100100001000101

_

1

)

!

0100100001000100

A 4

P

0100011011001101

~

0100100001000100

KEY, with 16 bits
integer

N

4

!

0000111010001001

0110100010000001 |

Pseudo-Random number
PRN-i

Figure 22. Initial Scrambling — Add() Random Generation

77

11.1.2 Initial Scrambling

0100100001000101 | 0100011011001101 | 011.. || .. |
: If using a 128 bits

KEY,
2 <E> 4 with 16 bits
0100100001000101

integer.
Pass_clear

Keep the last
4 bits

If using 16

bits integer Using new PRN-i+1
¢ Same process as

0000000000000101

and

Shift window SWa

0110100010000001

Pseudo-
Random
number PRN-i

\ 4

ﬂrcular shift of PRN-i using the SW window \

l.e.:if SWa =0101=5
Then 5 bits will be shifted from the left to the
right.

0001000000101101

New PRN-i+1

A 4
4— 0100100001000101
A 4 A 4

0101100001101000 | 0001010010011000 | 11. | | .. |

New string generated.
Pass code

Figure 23. Initial Scrambling - Add() Pass_code generation

11.1.3 Key Encryption — Swapping Part

f.25 - Swap() - Init

v

f.26 - Swap() - Modulo Generation

v

f.27 - Swapl() - Direction

v

f.28 - Swap() - Operation

PHASE 1: Repeat until all bits
have been through either a SWAP
or OPERATION

PHASE 2:Repeat PHASE 1 until
the number of ROUND is finished
(default Round = 2)

Figure 24. Key Encryption function — Swap() Overview

i=0

Modulo_Big = KEYLENGTH - 2
Modulo_Small = Modulo_Big / 2

Initialisation

Pass_code

0101100001101000 | 0001010010011000 | 11.. | ... | ..

.]..]..011101110101001011 ‘

v

;

:_.\>

Pass_code[0]

Pass_code[1]

Pass_code[2]

/ Pass_code [3]
% (Round +1)

[Additional Rounds AR”]

~

1 \T v
l K [Round + AR] j
Operation Direction Modulo New Dynamic round DRound. (max
(either 0 or 1) (either 0 or 1) (either 0 or 1) value is 2x original nb of round)

modulo_swap =
modulo_big

modulo_swap=
modulo_small

Figure 25. Key Encryption function — Swap() Initialisation

79

0101100001101000 | 0001010010011000 | 11.. | ... |

<

Pass_code

we |].01]1101110101001011

-

Pass_code[i]

Pass_code[i+1]

%
modulo_swap

~

)

v

modulo_session

v

Pass_code[i]

%

modulo_session

v

Shift window SWh

v

f.27 —-Swap()- Direction

J

i=i+1l
until
i=KEYLENGTH

Figure 26. Key Encryption function — Swap() Modulo Generation

80

-

Pass_code \

[]
0101100001101000 | ... | ... | ... | . | «. | -..] 1101110101001011
_/
~,
SWh

Bit A = pass_code[i]

Bit B = pass_code[i+SWb+1]

N

/

N

Bit B = pass_code[i2-x-1]

\ 4
/ Pass_codx
0101100001101000| .. | .. | <. | w. | «. | .. | 1101110101001011
— _/
N
SWb

Bit A = pass_code[KEYLENGTH -1 -i]

H_/

/

R

Figure 27. Key Encryption function — Swap() Direction

81

f.27 -Swap() - Direction

Operation

=0°?
07 BitA

Ao,

BitB

N

BitA BitB

Operation Choice = pass_code[i] %5 Operation Choice = pass_code[i + 1] %5

CHANGING
Bit Aand B
to

-

Choice 0 = Bit A *XOR* Bit B
Choice1=1 *XOR* (BitA *OR* BitB)
Choice 2 =Bit A *OR* BitB

Choice 3 =Bit A *AND* BitB

Choice 4 =1 *XOR* (BitA *AND* BitB)

o J

.
/

Modulo_Swap

Yes

~

= Modulo_Big
?

Modulo_Swap = Modulo_Small

No

K Modulo_Swap = Modulo_Big

v

Operation = Operation *XOR* 1 f.26 —=Swap()- Modulo Generation

Figure 28. Key Encryption function — Swap() Operation

82

11.1.4 Key Encryption — Coding part

. Initialisation
i=0
|

If no random number already provided in the function parameter, then:
Generate Random key either with the ISAAC algorithm or with the system

time.
Pass_code
o0ooio000111100011 | ..|..|..|..| .. | ..| 1001000101010110
% 16
j If using 16 bits integer
v
Random_key Index_1

Pass_code[Index_1] =

Pass_code[Index_1] Random_key

\ 4

LINEAR FEEDBACK SHIFT REGISTER (LFSR)

(With a different primitive polynom when using 64, 32 or 16 bits integer)

'

New Random_key

Pass_codel[i] =

Pass_code]i]

New Random_key

i=zi+l

Figure 29. Key Encryption function — Code()

83

11.2 File/Plaintext Encryption Function

11.2.1 Initialisation

Clear Text File

Hello World,

number of blocks.

This is a test file in clear text which we are about to
crypt. First we are going to “split” that file into a

Length = Block_shuffle

Red Square = Single Block_crypt

Tab_Seed and

Tab_Shuffle
Block 2 3 4 5 7
1
8 9 10 11
Password OR Key File

Key Generator
Not using random
number

(£f.29 - Code())

Key_ Buffer = Key_Buffer + IV_Key[0]
(Max 2x original Key_buffer value)

e

i=Pass_code[1]
Dynamic_shuffle = IV_Key[i] % 32 (if using 32 bits integer)
Block_shuffle = Dynamic_shuffle + Block_shuffle
Block crvot = File length in bvtes

Initialisation \

_

Block_shuffle is define with the following rules:
a) It must be a multiple of 4 bytes (if using 32 bits integer)

b) Block_crypt / block_shuffle >= 6

Figure 30. File encryption function — File_crypt() Initialisation

84

Key_Buffer = 16 (Can be changed by user)
NB_index = KEYLENGTH / 32 (when using 32 bits integer)

Initialisation

Key Generator

Not using random Key Generator

number With random
(£.29 - Code()) number

p
Pos_key = Pass_codeB[0] % block_crypt Insert “encrypted” random key into file at
Tab_seed[Pos_key] = 1 (not to be used again) postion “Pos_Key”

-

! —»

First RN

Code_keyl[i] o ¢ RN

New_RN

i=i+l
i>NB_Index ?

RN

Figure 31. File encryption function — Seed() Random Generation

85

11.2.2 Seeding

Pass_codeB
RN @

—> 4 <
Key Generator [Pass_codeB = Key i]

With RN as a random number.
Because of LSFR RN will change
each round

Nb of Key
generated =
Key_buffer?

Store Key_i into Yes

Keybuffer_array.

indexA = Pass_codeB[0] —
indexB = Pass_codeB[1]
Pos = Pass_codeBJ[i]

Keybuffer_array[indexB] Keybuffer_array[indexA]
@D

Tab_Seed[Pos] =
1?

Pos=Pos +1 New IndexA and IndexB
must be different from
previous IndexA

File to Seed

v
Block at
Position “Pos”
= Crypted Block Pass_codeB =
keybuffer_array[IndexB]
A
Replace file clear text block with the
crypted block Tab_Seed[pos] = 1
f.33 —file_crypt() -
Shuffle() - All file cleartext
. . blocks seeded?
Initialisation
Replace
RN > < Keybuffer_array[IndexA]
with Key_i
Key i

Figure 32. File encryption function — Seed() Probability Seed

86

11.2.3 Shuffling

index = IV_Key[0] Initialisation
PosA = IV_Key [Index]

PosB = IV_Key [Index + 1]

Random_seed = IV_Key [Index + 2]

Pos_crypt = “last block” (this is because the last block may have a variable size)
Length_shuffle = Length_file / Block_shuffle (number of shuffle block in the
file to crypt)

v

f.34 - file _crypt() — Shuffle() - Position & Operation

Figure 33. File encryption function - file_crypt() and Shuffle() Initialisation

87

f.33 —file crypt() — Shuffle() - Initialisation

Tab_shuffle[PosA] = 1
?

[PosA =PosA +1

Tab_shuffle[PosA] = 1
?

[PosB = PosB + 1

[Operation Choice = (PosA + PosB + Pos_crypt) % 3]

v

Block at

Choice 0 = Block[PosA] OR Block[PosB] Position “PosA”
osition “Pos.

File to Shuffle

Choice 1 = NOT (Block[PosA] OR Block[PosB])
Position

Choice 2 = NOT (Block[PosA] AND Block[PosB]) Ros_crypt”

[~

v e
Shuffled BLOCKS —>

Crypted BLOCK

v

Replace file block with the crypted block
Tab_Shuffle[Pos_crypt] = 1

v

f.35 — file crypt() -
Shuffle() —Last 2 blocks

All block file
shuffled?

Pos_crypt is an
Odd number?

Pos_crypt = PosA ¢—

'

RN = LFSR(Random Seed)
PosA = RN % Length_Shuffle Pos_crypt = PosB

RN = LFSR(Random Seed)
PosB = RN % Length_Shuffle

Figure 34. File encryption function —file_crypt() and Shuffle() Position & Operation

88

f.34 — file crypt() — Shuffle() - Position & Operation

v

Last 2 block files:

Block_Last1 and Block_Last2

They cannot be shuffled. Instead, they
are each encrypted as follow.

Key Generator
Not using random
number

(£f.29 - Code())

Block_Lastl
Key Generator
Not using random
number
(£f.29 - Code())
Block_Last2

;

STOP

§-+0F0%
;

Figure 35. File encryption function - file_crypt() and Shuffle() Last 2 Blocks

89

11.2.4 Alternatives

As stated at the beginning, all the variables highlighted in red in the previous steps
are IV/Key Dependant, they can also be changed to a different static values as an
option. The same is true for the size of the “block_crypt” as shown in Figure 36

below. This means that all the above steps can either be conducted across the entire

file or within smaller “working blocks”.

Red Squares = Multiple block_crypt

Block 2 3 /1/ 2 3

7

Figure 36. File encryption function — Alternative Block Crypt Size

90

12. Bibliography

[1]
[2]
3]
[4]

[5]
[6]

[7]

[8]

[9]

[10]
[11]

[12]

[13]
[14]
[15]
[16]
[17]

[18]

Cryptography History - S. Singh; The Code Book; Fourth Estate; 1999

Cipher definition - Linear Cryptanalysis of Substitution-Permutation
Networks; L. Keliher; Queen’s University, Kingston, Ontario, Canada; October
2003; Page 9

Types of Cryptography — A. Menezes, P. van Oorschot, S. Vanstone;
Handbook of Applied Cryptography; CRC Press; 1997; Page 15-32.

Block Cipher modes of operation — A. Menezes, P. van Oorschot, S. Vanstone;
Handbook of Applied Cryptography; CRC Press; 1997; Page 228-233.

Horst Feistel - http://en.wikipedia.org/wiki/Horst_Feistel

Feistel Description - M. Stamp and R. Low; Applied Cryptanalysis: Breaking
Ciphers in the Real World; Wiley; 2007; Pages 131-132

DES - D. Stinson; Cryptography: Theory and Practice; Third Edition; Chapman
& Hall; 2006; Pages 95- 102.

Also described in FIPS 46-3

Confusion/Diffusion — C. Shannon; Communication theory of secrecy systems,
Bell System Technical Journal Vol 28; 1949; Page 656.

Quantum Cryptography flawed sense of security — Bruce Schneier; Crypto-
gram newsletter; Quantum Cryptography; 15 November 2008
http://www.schneier.com/crypto-gram-0811.html#4

The Great Cipher - S. Singh; The Code Book; Fourth Estate; 1999; Pages 52-58
The Playfair Cipher - S. Singh; The Code Book; Fourth Estate; 1999;

Appendix E.

A good explanation is also currently available on Wikipedia,
http://tinyurl.com/388wt8

The Vigenere Cipher - An interactive explanation of the cipher is available on
Simon Singh’s website, http://tinyurl.com/q50pzs

An interactive explanation on how to break that cipher is available on the
website of the Information Security Laboratory organization at the Oregon
State University: http://tinyurl.com/qcomse

Index of Coincidence — C. Swenson; Modern Cryptanalysis: Techniques For
Advanced Code Breaking; Willey Publishing; 2008; Pages 12-15.

Feistel Cipher — A. Menezes, P. van Oorschot, S. Vanstone; Handbook of
Applied Cryptography; CRC Press; 1997; Page 251.

Cryptanalysis of Enigma — Wikipedia:
http://en.wikipedia.org/wiki/Cryptanalysis_of_the_Enigma

Forced Plain Text in WWII - S. Singh; The Code Book; Fourth Estate; 1999;
Page 183

AES - NIST; FIPS 197; 2001
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf

Related Keys - E. Biham; New type of cryptanalytic attacks using related keys;
Eurocrypt '93; Pages 398-409

91

[19]

[20]

[21]
[22]

[23]
[24]
[25]
[26]
[27]
[28]

[29]
[30]

[31]
[32]
[33]
[34]
[35]
[36]
[37]
[38]
[39]

[40]

Slide Attack History - E. Grossman and B. Tuckerman; Analysis of a Feistel-like
cipher weakened by having no rotating key; IBM; Thomas J. Watson
Research; Technical Report RC 6375.

Slide Attack Details — A. Biryukov and D. Wagner; Slide Attacks; FSE'99; Pages
245-259.

Birthday Paradox - http://en.wikipedia.org/wiki/Birthday_paradox

Slide Attacks Extensions — A. Biryukov and D. Wagner — Advanced Slide
Attacks; EUROCRYPT 2000; Pages 589-606

Meet in the Middle Attack - W. Diffie and M. E. Hellman, Exhaustive
Cryptanalysis of the NBS Data Encryption Standard, 1977

Hellman Time-Space Tradeoff Attack - M. Hellman; A Cryptanalytic Time
Memory Trade-off; IEEE no 26(4); 1980

Hellman TMTO explanation — M. Stamp and R. Low; Applied Cryptanalysis:
Breaking Ciphers in the Real World; Wiley; 2007; Pages 133-142
Distinguished Points — D. Denning; Cryptography and Data Security; Addison-
Wesley; 1982

Rainbow Tables - P. Oechslin ; Making a Faster Cryptanalytic Time-Memory
Trade-Off; CRYPTO’03

Distinguished Rainbow Points - Tim Guneysu, Andy Rupp and Stefan Spitz;
Cryptanalytic Time-Memory Tradeoffs on COPACOBANA; 2007
COBACOBANA - http://www.copacobana.org/

Start of Linear Cryptanalysis — M. Matsui and A. Yamagishi; A new method for
known plaintext attack of FEAL Cipher; Eurocrypt '93; Pages 81-91

FEAL Cipher — A. Shimizu and S. Miyaguchi; Fast Data Encipherment Algorithm
FEAL; Eurocrypt '87; Pages 267-278

Linear Cryptanalysis Tutorial — H. Heys; A Tutorial on Linear and Differential
Cryptanalysis; Memorial University of Newfoundland

Matsui Linear search algorithm - M. Matsui; The first experimental crypt
analysis of the Data Encryption Standard; Crypto’94, Pages 1-11.

Another Linear search algorithm — K. Ohta, S. Moriai, K. Aoki; Improving the
search algorithm for the best linear expression; Crypto’95; Pages 157-170.
Stream Ciphers Linear Cryptanalysis —). Golic: Linear Cryptanalysis of Stream
Ciphers; FSE 1994; Pages 154-169

Bluetooth Stream Cipher - J. Golic, V. Bagini, G. Morgari; Linear Cryptanalysis
of Bluetooth Stream Cipher; EUROCRYPT 2002; Pages 238-255

Complexity attack ratio for DES — M. Matsui; Linear Cryptanalysis method for
DES Cipher; Eurocrypt’93; Page 393, Formula no. 15.

Complexity attack ratio for FEAL-8 — E. Biham; On Matsui’s Linear
Cryptanalysis; 1994; Page 353

Linear Hull Definition - K. Nyberg; Linear approximation of block ciphers;
EUROCRYPT'94; Pages 439-444

Linear Hull modern application - Linear Cryptanalysis of Substitution-
Permutation Networks; L. Keliher; Queen’s University, Kingston, Ontario,
Canada; October 2003.

92

[41]

[42]

[43]
[44]

[45]

[46]

[47]
[48]

[49]

[50]

[51]
[52]
[53]
[54]
[55]
[56]

[57]

[58]

[59]

[60]

Multiple Linear Approximations — B. Kaliski Jr, M. Robshaw; Linear
Cryptanalysis using multiple approximations; Crypto '94; Pages 26-39.
Multiple Linear Approximations Framework - A. Biryukov, C. De Canniere, M.
Quisquater; On Multiple Linear Approximations; Lecture Notes in Computer
Science 3152, proceedings of CRYPTO'2004, Pages 1-22.

Linear Cryptanalysis Variant - By H. Tilborg ; Encyclopedia of Cryptography
and Security; Springer; 2005.

Key-Ranking - P. Junod, S. Vaudenay; Optimal key ranking procedures in a
statistical cryptanalysis; Swiss Federal Institute of Technology; 2003.
Partitioning Cryptanalysis — C. Harpes, G. Kramer, J. Massey; A Generalization
of Linear Cryptanalysis and the Applicability of Matsui's Piling-up Lemma;
Eurocrypt’95; May 1995; Pages 24-38.

Chi-Square Attack —). Kelsey , B. Schneier , D. Wagner, C. Hall; Side Channel
Cryptanalysis of Product Ciphers; Counterpane Internet Security

Chi-Square Introduction- http://tinyurl.com/kk7yhc

Non-Linear Cryptanalysis - L. Knudsen and M. Robshaw, Non-linear
approximations in linear cryptanalysis; Eurocrypt’96; Pages 224—236.
Differential Cryptanalysis — E. Biham and A. Shamir; Differential Cryptanalysis
of DES like cryptosystems; Crypto’90; Pages 2-21.

IBM and NSA on differential Cryptanalysis — D. Coppersmith; The Data
Encryption Standard (DES) and its strength against attacks; IBM Journal of
Research and Development 38

American Cryptology during the cold war - Thomas R. Johnson,
http://tinyurl.com/559260

Modern Cryptanalysis — C. Swenson; Modern Cryptanalysis, Techniques for
Advanced Code Breaking; Wiley; 2008.

Differential-Linear combined attack— M. Hellman and S. Langford;
Differential-linear Cryptanalysis, Crypto’94; Pages 26-39

Conditional Characteristics — |. Ben-Aroya and E. Biham; Differential
Cryptanalysis of Lucifer; Crypto’93; Pages 187-199.

Luficer Algorithm — A. Sorkin; Lucifer, a Cryptographic Algorithm; Cryptologia
volume 8; 1984; Pages 22-41

RDES — K. Koyama and R. Terada; How to Strenghtn DES-like Cryptosystems
against Differential Cryptanalysis; IEICE Volume E76-A; 1993; Pages 63-69
Differential variants- L. Knudsen; Truncated and Higher Order Differentials;
Fast Software Encryption: Second International Workshop; 1994; Pages 196-
211.

Twofish — B. Schneier, J. Kelsey, D. Whiting, D. Wagner, C. Hall and N.
Ferguson; The Twofish Encryption Algorithm: A 128-bit Block Cipher; John
Wiley & Sons; 1999

Twofish Cryptanalysis — S. Moriai and Y. Yin; Cryptanalysis of Twofish (I1);
2000

Impossible Differential Introduction — E. Biham, A. Biryukov and A. Shamir;
Rump session presentation at Crypto '98; http://tinyurl.com/kpp4sn

93

[61]
[62]
[63]
[64]
[65]
[66]
[67]

[68]

[69]
[70]
[71]
[72]
[73]

[74]

[75]

[76]

[77]

[78]

[79]

[80]

[81]
[82]

Impossible Differential Technique — E. Biham, A. Biryukov and A. Shamir; Miss
in the Middle Attacks on IDEA, Khufu and Khafre; FSE; 1999, Pages 124-138.
Boomerang Attack — D. Wagner; The Boomerang Attack; FSE’99; Pages 156-
170.

Amplified Boomerang Attack —). Kelsey, T. Kohno and B. Schneier; Amplified
Boomerang attacks against reduced-round MARD and Serpent; 2000.
Rectangle Attack — E. Biham, O. Dunkelman and N. Keller; The Rectangle
Attack — Rectangling the Serpent; 2001

Integral Cryptanalysis - L Knudsen and D. Wagner; Integral Cryptanalysis; FSE;
Lecture Notes in Computer Science Vol 2365; 2002; Pages 112-127
Square — J. Daemen, L. Knudsen, V. Rijmen; The Block Cipher Square; FSE;
Lecture Notes in Computer Science Volume 1267; 1997; Pages 149-165
Saturation Attack —S. Lucks; The Saturation Attack - a Bait for Twofish; FSE;
2001

Algebraic Cryptanalysis — C. Cid and R; Block Ciphers: Algebraic Cryptanalysis
and Grobner Bases; Grobner Bases, Coding, and Cryptography ; 2009;
Springer; Pages 307-327

Interpolation Attack - T. Jakobsen and L. Knudsen; The Interpolation Attack
on Block Ciphers; FSE; 1997

XSL Attacks - N. Courtois and J. Pieprzyk; Cryptanalysis of Block Ciphers with
Overdefined Systems of Equations; 2002; http://eprint.iacr.org/2002/044
XLS Attack Analysis - C. Cid and G. Leurent; An Analysis of the XSL algorithm;
ASIACRYPT’05; LNCS Volume 3788; Pages 333-352

Cube Attack - A. Shamir and |. Dinur; Cube Attacks on Tweakable Black Box
Polynomials; 2008; http://eprint.iacr.org/2008/385.pdf

Cube Attack Controversy 1 - M. Vielhaber; Shamir’s “cube attack”: A Remake
of AIDA,;

http://tinyurl.com/Ig33rt

Cube Attack Controversy 2 - D. Bernstein; Why haven't cube attacks broken
anything;

http://cr.yp.to/cubeattacks.html

WEP - |EEE Standard 802.11-1997; http://tinyurl.com/qapb3o

RC4 algorithm and attacks — M. Stamp and R. Low; Applied Cryptanalysis:
Breaking Ciphers in the Real World; Wiley; 2007; Pages 103-110

WEP Early Attack —S. Fluhrer, . Mantin, and A. Shamir; Weaknesses in the
Key Scheduling Algorithm of RC4; 2001

RC4 Random Generator - |. Mantin; Predicting and Distinguishing Attacks on
RC4 Keystream Generator; EUROCRYPTO5; volume 3494 of LNCS; pages 491—
506

RC4 Recent Attack - A. Klein; Attacks on the RC4 stream cipher; 2006

WEP Latest Attack — E. Tews, A. Pychkine, and R.P. Weinmann; Breaking 104
bit WEP in less than 60 seconds; 2007

Aircrack-ptw - http://www.cdc.informatik.tu-darmstadt.de/aircrack-ptw/
WEP T.J. Max Incident — EETimes - http://tinyurl.com/rc69ve

94

[83]
[84]
[85]
[86]
[87]
[88]
[89]
[90]
[91]
[92]
[93]

[94]

[95]

[96]

[97]

[98]
[99]
[100]

[101]
[102]

[103]
[104]

LM Hash Attack - C. Swenson; Modern Cryptanalysis: Techniques For
Advanced Code Breaking; Willey Publishing; 2008; Page 158.

Ophcrack - http://ophcrack.sourceforge.net/

Bluetooth Specification - http://www.bluetooth.com/Bluetooth/Technology/
Bluetooth Related Algebraic Attack — N. Courtois and W. Meier; Fast
Algebraic Attacks on Stream Ciphers with Linear Feedback; 2003

Bluetooth Attack Summary - D. Singelée and B. Preneel; STILL ONLY A DRAFT;
Review of the Bluetooth Security Architecture; 2006

Bluetooth Correlation Attack — J. Golic, V. Bagini and G. Morgari; Linear
Cryptanalysis of Bluetooth Stream Cipher; EUROCRYPT’02

Bluetooth Conditional Correlation Attack - Y. Lu, W. Meier, S. Vaudenay; The
Conditional Correlation Attack:A Practical Attack on Bluetooth Encryption;
Barclays and wireless phone payment — The Daily Mail Newspaper;
http://tinyurl.com/5mbu5o

Bluetooth Security Guide — K. Scarfone and J. Padgette; NIST guide to
Bluetooth security; Special Publication 800-121; 2008

AES Candicate—). Daemen and V. Rijmen; AES Proposal: Rijndael; 1999
Also described in FIPS 197

AES Attack — A. Biryukov and D. Khovratovich; Related-key Cryptanalysis of
the Full AES-192 and AES-256; University of Luxembourg; 2009

AES Practical Cryptanalysis — A. Biryukov, O. Dunkelman, N. Keller, D.
Khovratovich, and A. Shamir; Key Recovery Attacks of Practical Complexity on
AES Variants With Up To 10 Rounds; 2009; http://eprint.iacr.org/2009/374
French University Lyon — L'Institut Universitaire de Technologie A - Lyonl
http://iut-a.univ-lyon1.fr/

UK University and BSc project — Teesside University, School of Computing;
http://www-scm.tees.ac.uk/

BUGS Project Website, http://www.encryptolutions.com

IEEE Newsletter — Newsletter of the IEEE Computer Society's TC on Security
and Privacy; Electronic Issue 28; 13 July 1998.

http://tinyurl.com/r83xhc

Applied Cryptography book — B Schneier; Applied Cryptography; Second
Edition; John Wiley & Sons; 1996

ISAAC Random Generator — B. Jenkins;
http://burtleburtle.net/bob/rand/isaacafa.html

Cryptanalysis Scripts Contributor — T. Martinez; INRIA France;
http://contraintes.inria.fr/~tmartine

GPG - http://www.gnupg.org/

Greedy Algorithm -
http://en.wikipedia.org/wiki/Greedy_algorithm#References

NSA Cryptologic Memorial - http://tinyurl.com/I2j3eo

Imagemagick - http://www.imagemagick.org/script/index.php

95

